ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x-x\left(x-1\right)=0\times 6\times 3x
ଭାରିଏବୁଲ୍‌ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 3x ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x,3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
3x-\left(x^{2}-x\right)=0\times 6\times 3x
x କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x-x^{2}-\left(-x\right)=0\times 6\times 3x
x^{2}-x ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
3x-x^{2}+x=0\times 6\times 3x
-x ର ବିପରୀତ ହେଉଛି x.
4x-x^{2}=0\times 6\times 3x
4x ପାଇବାକୁ 3x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
4x-x^{2}=0\times 3x
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 6 ଗୁଣନ କରନ୍ତୁ.
4x-x^{2}=0x
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
4x-x^{2}=0
ଯାହାକିଛିର ଶୂନ୍ୟ ଗୁଣା ଶୂନ୍ୟ ଦେଇଥାଏ.
x\left(4-x\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=4
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ 4-x=0 ସମାଧାନ କରନ୍ତୁ.
x=4
ଭାରିଏବୁଲ୍‌ x 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
3x-x\left(x-1\right)=0\times 6\times 3x
ଭାରିଏବୁଲ୍‌ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 3x ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x,3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
3x-\left(x^{2}-x\right)=0\times 6\times 3x
x କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x-x^{2}-\left(-x\right)=0\times 6\times 3x
x^{2}-x ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
3x-x^{2}+x=0\times 6\times 3x
-x ର ବିପରୀତ ହେଉଛି x.
4x-x^{2}=0\times 6\times 3x
4x ପାଇବାକୁ 3x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
4x-x^{2}=0\times 3x
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 6 ଗୁଣନ କରନ୍ତୁ.
4x-x^{2}=0x
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
4x-x^{2}=0
ଯାହାକିଛିର ଶୂନ୍ୟ ଗୁଣା ଶୂନ୍ୟ ଦେଇଥାଏ.
-x^{2}+4x=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 4, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-4±4}{2\left(-1\right)}
4^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-4±4}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{0}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-4±4}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -4 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
x=0
0 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{8}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-4±4}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -4 ରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
x=4
-8 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=0 x=4
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x=4
ଭାରିଏବୁଲ୍‌ x 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
3x-x\left(x-1\right)=0\times 6\times 3x
ଭାରିଏବୁଲ୍‌ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 3x ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x,3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
3x-\left(x^{2}-x\right)=0\times 6\times 3x
x କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x-x^{2}-\left(-x\right)=0\times 6\times 3x
x^{2}-x ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
3x-x^{2}+x=0\times 6\times 3x
-x ର ବିପରୀତ ହେଉଛି x.
4x-x^{2}=0\times 6\times 3x
4x ପାଇବାକୁ 3x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
4x-x^{2}=0\times 3x
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 6 ଗୁଣନ କରନ୍ତୁ.
4x-x^{2}=0x
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
4x-x^{2}=0
ଯାହାକିଛିର ଶୂନ୍ୟ ଗୁଣା ଶୂନ୍ୟ ଦେଇଥାଏ.
-x^{2}+4x=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-x^{2}+4x}{-1}=\frac{0}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{4}{-1}x=\frac{0}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-4x=\frac{0}{-1}
4 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-4x=0
0 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
-2 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -4 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -2 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-4x+4=4
ବର୍ଗ -2.
\left(x-2\right)^{2}=4
ଗୁଣକ x^{2}-4x+4. ସାଧାରଣରେ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ଯଥାର୍ଥ ବର୍ଗ ହୋଇଥାଏ, ଏହା ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ରୂପେ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ କରାଯାଇପାରିବ.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-2=2 x-2=-2
ସରଳୀକୃତ କରିବା.
x=4 x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
x=4
ଭାରିଏବୁଲ୍‌ x 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.