ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ପ୍ରସାରଣ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{x\left(x^{2}+6x+9\right)}{\left(x+3\right)\left(x^{2}+x\right)}+\frac{3x-3}{x^{2}-1}
\frac{x^{2}+x}{x^{2}+6x+9} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା \frac{x}{x+3} କୁ ଗୁଣନ କରି \frac{x}{x+3} କୁ \frac{x^{2}+x}{x^{2}+6x+9} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{x\left(x+3\right)^{2}}{x\left(x+1\right)\left(x+3\right)}+\frac{3x-3}{x^{2}-1}
\frac{x\left(x^{2}+6x+9\right)}{\left(x+3\right)\left(x^{2}+x\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{x+3}{x+1}+\frac{3x-3}{x^{2}-1}
ଉଭୟ ଲବ ଓ ହରରେ x\left(x+3\right) ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{x+3}{x+1}+\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}
\frac{3x-3}{x^{2}-1} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{x+3}{x+1}+\frac{3}{x+1}
ଉଭୟ ଲବ ଓ ହରରେ x-1 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{x+3+3}{x+1}
ଯେହେତୁ \frac{x+3}{x+1} ଏବଂ \frac{3}{x+1} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{x+6}{x+1}
x+3+3ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{x\left(x^{2}+6x+9\right)}{\left(x+3\right)\left(x^{2}+x\right)}+\frac{3x-3}{x^{2}-1}
\frac{x^{2}+x}{x^{2}+6x+9} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା \frac{x}{x+3} କୁ ଗୁଣନ କରି \frac{x}{x+3} କୁ \frac{x^{2}+x}{x^{2}+6x+9} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{x\left(x+3\right)^{2}}{x\left(x+1\right)\left(x+3\right)}+\frac{3x-3}{x^{2}-1}
\frac{x\left(x^{2}+6x+9\right)}{\left(x+3\right)\left(x^{2}+x\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{x+3}{x+1}+\frac{3x-3}{x^{2}-1}
ଉଭୟ ଲବ ଓ ହରରେ x\left(x+3\right) ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{x+3}{x+1}+\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}
\frac{3x-3}{x^{2}-1} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{x+3}{x+1}+\frac{3}{x+1}
ଉଭୟ ଲବ ଓ ହରରେ x-1 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{x+3+3}{x+1}
ଯେହେତୁ \frac{x+3}{x+1} ଏବଂ \frac{3}{x+1} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{x+6}{x+1}
x+3+3ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.