a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}a=-\frac{bx}{y-b}\text{, }&b\neq 0\text{ and }x\neq 0\text{ and }y\neq b\\a\neq 0\text{, }&b=y\text{ and }x=0\text{ and }y\neq 0\end{matrix}\right.
b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}b=-\frac{ay}{x-a}\text{, }&a\neq 0\text{ and }y\neq 0\text{ and }x\neq a\\b\neq 0\text{, }&a=x\text{ and }y=0\text{ and }x\neq 0\end{matrix}\right.
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
bx+ay=ab
ଭାରିଏବୁଲ୍ a 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ ab ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, a,b ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
bx+ay-ab=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ ab ବିୟୋଗ କରନ୍ତୁ.
ay-ab=-bx
ଉଭୟ ପାର୍ଶ୍ୱରୁ bx ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\left(y-b\right)a=-bx
a ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(y-b\right)a}{y-b}=-\frac{bx}{y-b}
ଉଭୟ ପାର୍ଶ୍ୱକୁ y-b ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=-\frac{bx}{y-b}
y-b ଦ୍ୱାରା ବିଭାଜନ କରିବା y-b ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
a=-\frac{bx}{y-b}\text{, }a\neq 0
ଭାରିଏବୁଲ୍ a 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
bx+ay=ab
ଭାରିଏବୁଲ୍ b 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ ab ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, a,b ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
bx+ay-ab=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ ab ବିୟୋଗ କରନ୍ତୁ.
bx-ab=-ay
ଉଭୟ ପାର୍ଶ୍ୱରୁ ay ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\left(x-a\right)b=-ay
b ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(x-a\right)b}{x-a}=-\frac{ay}{x-a}
ଉଭୟ ପାର୍ଶ୍ୱକୁ x-a ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
b=-\frac{ay}{x-a}
x-a ଦ୍ୱାରା ବିଭାଜନ କରିବା x-a ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
b=-\frac{ay}{x-a}\text{, }b\neq 0
ଭାରିଏବୁଲ୍ b 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}