ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x-y=-4
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3,6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x-3y=6\left(1\times 2+1\right)
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 12 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 12,4,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x-3y=6\left(2+1\right)
2 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
x-3y=6\times 3
3 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
x-3y=18
18 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
2x-y=-4,x-3y=18
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
2x-y=-4
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
2x=y-4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ y ଯୋଡନ୍ତୁ.
x=\frac{1}{2}\left(y-4\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{1}{2}y-2
\frac{1}{2} କୁ y-4 ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}y-2-3y=18
ଅନ୍ୟ ସମୀକରଣ, x-3y=18 ରେ x ସ୍ଥାନରେ \frac{y}{2}-2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-\frac{5}{2}y-2=18
\frac{y}{2} କୁ -3y ସହ ଯୋଡନ୍ତୁ.
-\frac{5}{2}y=20
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
y=-8
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{5}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=\frac{1}{2}\left(-8\right)-2
x=\frac{1}{2}y-2 ରେ y ପାଇଁ -8 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=-4-2
\frac{1}{2} କୁ -8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-6
-2 କୁ -4 ସହ ଯୋଡନ୍ତୁ.
x=-6,y=-8
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
2x-y=-4
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3,6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x-3y=6\left(1\times 2+1\right)
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 12 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 12,4,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x-3y=6\left(2+1\right)
2 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
x-3y=6\times 3
3 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
x-3y=18
18 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
2x-y=-4,x-3y=18
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}2&-1\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\18\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}2&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}2&-1\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}-4\\18\end{matrix}\right)
\left(\begin{matrix}2&-1\\1&-3\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}-4\\18\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}-4\\18\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-\left(-1\right)}&-\frac{-1}{2\left(-3\right)-\left(-1\right)}\\-\frac{1}{2\left(-3\right)-\left(-1\right)}&\frac{2}{2\left(-3\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-4\\18\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{1}{5}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-4\\18\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\left(-4\right)-\frac{1}{5}\times 18\\\frac{1}{5}\left(-4\right)-\frac{2}{5}\times 18\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-8\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=-6,y=-8
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
2x-y=-4
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3,6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x-3y=6\left(1\times 2+1\right)
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 12 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 12,4,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x-3y=6\left(2+1\right)
2 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
x-3y=6\times 3
3 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
x-3y=18
18 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
2x-y=-4,x-3y=18
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
2x-y=-4,2x+2\left(-3\right)y=2\times 18
2x ଏବଂ x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ 1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
2x-y=-4,2x-6y=36
ସରଳୀକୃତ କରିବା.
2x-2x-y+6y=-4-36
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା 2x-y=-4 ଠାରୁ 2x-6y=36 କୁ ବିୟୋଗ କରନ୍ତୁ.
-y+6y=-4-36
2x କୁ -2x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ 2x ଏବଂ -2x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
5y=-4-36
-y କୁ 6y ସହ ଯୋଡନ୍ତୁ.
5y=-40
-4 କୁ -36 ସହ ଯୋଡନ୍ତୁ.
y=-8
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x-3\left(-8\right)=18
x-3y=18 ରେ y ପାଇଁ -8 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x+24=18
-3 କୁ -8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 24 ବିୟୋଗ କରନ୍ତୁ.
x=-6,y=-8
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.