ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ପ୍ରସାରଣ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{3}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
ଗୁଣନିୟକ x^{3}-1.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x^{3} କୁ \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
ଯେହେତୁ \frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} ଏବଂ \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}
x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{x^{3}-1}
ବିସ୍ତାର କରନ୍ତୁ \left(x-1\right)\left(x^{2}+x+1\right).
x^{3}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
ଗୁଣନିୟକ x^{3}-1.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x^{3} କୁ \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
ଯେହେତୁ \frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} ଏବଂ \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}
x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{x^{3}-1}
ବିସ୍ତାର କରନ୍ତୁ \left(x-1\right)\left(x^{2}+x+1\right).