ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ପ୍ରସାରଣ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଗୁଣନିୟକ x^{3}-9x. ଗୁଣନିୟକ x^{2}-9.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x-3\right)\left(x+3\right) ଏବଂ \left(x-3\right)\left(x+3\right) ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x-3\right)\left(x+3\right). \frac{1}{\left(x-3\right)\left(x+3\right)} କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}-x+9+x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଯେହେତୁ \frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)} ଏବଂ \frac{x}{x\left(x-3\right)\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
x^{2}-x+9+xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x-3\right)\left(x+3\right) ଏବଂ x-3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x-3\right)\left(x+3\right). \frac{1}{x-3} କୁ \frac{x\left(x+3\right)}{x\left(x+3\right)} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}+9-x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
ଯେହେତୁ \frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)} ଏବଂ \frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{2}+9-x^{2}-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x\left(x+3\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x^{2}-3xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{3\left(-x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{-3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
3-x ରେ ବିଯୁକ୍ତ ଚିହ୍ନ ଉଦ୍ଧାର କରନ୍ତୁ.
\frac{-3}{x\left(x+3\right)}+\frac{1}{x}
ଉଭୟ ଲବ ଓ ହରରେ x-3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{-3}{x\left(x+3\right)}+\frac{x+3}{x\left(x+3\right)}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x+3\right) ଏବଂ x ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x+3\right). \frac{1}{x} କୁ \frac{x+3}{x+3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-3+x+3}{x\left(x+3\right)}
ଯେହେତୁ \frac{-3}{x\left(x+3\right)} ଏବଂ \frac{x+3}{x\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{x}{x\left(x+3\right)}
-3+x+3ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{1}{x+3}
ଉଭୟ ଲବ ଓ ହରରେ x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଗୁଣନିୟକ x^{3}-9x. ଗୁଣନିୟକ x^{2}-9.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x-3\right)\left(x+3\right) ଏବଂ \left(x-3\right)\left(x+3\right) ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x-3\right)\left(x+3\right). \frac{1}{\left(x-3\right)\left(x+3\right)} କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}-x+9+x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଯେହେତୁ \frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)} ଏବଂ \frac{x}{x\left(x-3\right)\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
x^{2}-x+9+xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x-3\right)\left(x+3\right) ଏବଂ x-3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x-3\right)\left(x+3\right). \frac{1}{x-3} କୁ \frac{x\left(x+3\right)}{x\left(x+3\right)} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}+9-x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
ଯେହେତୁ \frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)} ଏବଂ \frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{2}+9-x^{2}-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x\left(x+3\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x^{2}-3xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{3\left(-x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{-3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
3-x ରେ ବିଯୁକ୍ତ ଚିହ୍ନ ଉଦ୍ଧାର କରନ୍ତୁ.
\frac{-3}{x\left(x+3\right)}+\frac{1}{x}
ଉଭୟ ଲବ ଓ ହରରେ x-3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{-3}{x\left(x+3\right)}+\frac{x+3}{x\left(x+3\right)}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x+3\right) ଏବଂ x ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x+3\right). \frac{1}{x} କୁ \frac{x+3}{x+3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-3+x+3}{x\left(x+3\right)}
ଯେହେତୁ \frac{-3}{x\left(x+3\right)} ଏବଂ \frac{x+3}{x\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{x}{x\left(x+3\right)}
-3+x+3ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{1}{x+3}
ଉଭୟ ଲବ ଓ ହରରେ x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.