ମୂଲ୍ୟାୟନ କରିବା
\frac{1}{x+3}
ପ୍ରସାରଣ
\frac{1}{x+3}
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଗୁଣନିୟକ x^{3}-9x. ଗୁଣନିୟକ x^{2}-9.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x-3\right)\left(x+3\right) ଏବଂ \left(x-3\right)\left(x+3\right) ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x-3\right)\left(x+3\right). \frac{1}{\left(x-3\right)\left(x+3\right)} କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}-x+9+x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଯେହେତୁ \frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)} ଏବଂ \frac{x}{x\left(x-3\right)\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
x^{2}-x+9+xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x-3\right)\left(x+3\right) ଏବଂ x-3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x-3\right)\left(x+3\right). \frac{1}{x-3} କୁ \frac{x\left(x+3\right)}{x\left(x+3\right)} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}+9-x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
ଯେହେତୁ \frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)} ଏବଂ \frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{2}+9-x^{2}-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x\left(x+3\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x^{2}-3xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{3\left(-x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{-3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
3-x ରେ ବିଯୁକ୍ତ ଚିହ୍ନ ଉଦ୍ଧାର କରନ୍ତୁ.
\frac{-3}{x\left(x+3\right)}+\frac{1}{x}
ଉଭୟ ଲବ ଓ ହରରେ x-3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{-3}{x\left(x+3\right)}+\frac{x+3}{x\left(x+3\right)}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x+3\right) ଏବଂ x ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x+3\right). \frac{1}{x} କୁ \frac{x+3}{x+3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-3+x+3}{x\left(x+3\right)}
ଯେହେତୁ \frac{-3}{x\left(x+3\right)} ଏବଂ \frac{x+3}{x\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{x}{x\left(x+3\right)}
-3+x+3ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{1}{x+3}
ଉଭୟ ଲବ ଓ ହରରେ x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଗୁଣନିୟକ x^{3}-9x. ଗୁଣନିୟକ x^{2}-9.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x-3\right)\left(x+3\right) ଏବଂ \left(x-3\right)\left(x+3\right) ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x-3\right)\left(x+3\right). \frac{1}{\left(x-3\right)\left(x+3\right)} କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}-x+9+x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
ଯେହେତୁ \frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)} ଏବଂ \frac{x}{x\left(x-3\right)\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
x^{2}-x+9+xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x-3\right)\left(x+3\right) ଏବଂ x-3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x-3\right)\left(x+3\right). \frac{1}{x-3} କୁ \frac{x\left(x+3\right)}{x\left(x+3\right)} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}+9-x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
ଯେହେତୁ \frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)} ଏବଂ \frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{2}+9-x^{2}-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x\left(x+3\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x^{2}-3xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{3\left(-x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{-3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
3-x ରେ ବିଯୁକ୍ତ ଚିହ୍ନ ଉଦ୍ଧାର କରନ୍ତୁ.
\frac{-3}{x\left(x+3\right)}+\frac{1}{x}
ଉଭୟ ଲବ ଓ ହରରେ x-3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{-3}{x\left(x+3\right)}+\frac{x+3}{x\left(x+3\right)}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x+3\right) ଏବଂ x ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x+3\right). \frac{1}{x} କୁ \frac{x+3}{x+3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-3+x+3}{x\left(x+3\right)}
ଯେହେତୁ \frac{-3}{x\left(x+3\right)} ଏବଂ \frac{x+3}{x\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{x}{x\left(x+3\right)}
-3+x+3ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{1}{x+3}
ଉଭୟ ଲବ ଓ ହରରେ x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}