x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x-3\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -2,-1 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x+1\right)\left(x+2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x+2,x+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
\left(x+1\right)^{2}=\left(x+2\right)\left(x-3\right)
\left(x+1\right)^{2} ପ୍ରାପ୍ତ କରିବାକୁ x+1 ଏବଂ x+1 ଗୁଣନ କରନ୍ତୁ.
x^{2}+2x+1=\left(x+2\right)\left(x-3\right)
\left(x+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2x+1=x^{2}-x-6
x+2 କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+2x+1-x^{2}=-x-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
2x+1=-x-6
0 ପାଇବାକୁ x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
2x+1+x=-6
ଉଭୟ ପାର୍ଶ୍ଵକୁ x ଯୋଡନ୍ତୁ.
3x+1=-6
3x ପାଇବାକୁ 2x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
3x=-6-1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
3x=-7
-7 ପ୍ରାପ୍ତ କରିବାକୁ -6 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-7}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{7}{3}
ଋଣାତ୍ମକ ଚିହ୍ନକୁ କାଢିଦେବା ଦ୍ୱାରା ଭଗ୍ନାଂଶ \frac{-7}{3} କୁ -\frac{7}{3} ଭାବେ ପୁଣି ଲେଖାଯାଇପାରିବ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}