ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. v ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. v+1 ଏବଂ v-1 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି \left(v-1\right)\left(v+1\right). \frac{v}{v+1} କୁ \frac{v-1}{v-1} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{3}{v-1} କୁ \frac{v+1}{v+1} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
ଯେହେତୁ \frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} ଏବଂ \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
v\left(v-1\right)+3\left(v+1\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
v^{2}-v+3v+3ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)}
ଗୁଣନିୟକ v^{2}-1.
\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)}
ଯେହେତୁ \frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} ଏବଂ \frac{6}{\left(v-1\right)\left(v+1\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}
v^{2}+2v+3-6ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)}
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{v+3}{v+1}
ଉଭୟ ଲବ ଓ ହରରେ v-1 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. v+1 ଏବଂ v-1 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି \left(v-1\right)\left(v+1\right). \frac{v}{v+1} କୁ \frac{v-1}{v-1} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{3}{v-1} କୁ \frac{v+1}{v+1} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
ଯେହେତୁ \frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} ଏବଂ \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
v\left(v-1\right)+3\left(v+1\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
v^{2}-v+3v+3ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)})
ଗୁଣନିୟକ v^{2}-1.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)})
ଯେହେତୁ \frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} ଏବଂ \frac{6}{\left(v-1\right)\left(v+1\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)})
v^{2}+2v+3-6ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)})
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v+3}{v+1})
ଉଭୟ ଲବ ଓ ହରରେ v-1 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\left(v^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+3)-\left(v^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+1)}{\left(v^{1}+1\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍‌ଯୋଗ୍ୟ ଫଙ୍କସନ୍‌ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍‌ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍‌ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍‌ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\left(v^{1}+1\right)v^{1-1}-\left(v^{1}+3\right)v^{1-1}}{\left(v^{1}+1\right)^{2}}
ଏକ ପଲିନୋମିଆଲ୍‌ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍‌ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍‌ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି nax^{n-1}.
\frac{\left(v^{1}+1\right)v^{0}-\left(v^{1}+3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
ପାଟୀଗଣିତ କରନ୍ତୁ.
\frac{v^{1}v^{0}+v^{0}-\left(v^{1}v^{0}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରିବା ବିସ୍ତାର କରନ୍ତୁ.
\frac{v^{1}+v^{0}-\left(v^{1}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
ସମାନ ଆଧାର ବା ବେସ୍‌ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
\frac{v^{1}+v^{0}-v^{1}-3v^{0}}{\left(v^{1}+1\right)^{2}}
ଅନାବଶ୍ୟକ ବନ୍ଧନୀଗୁଡିକ ଅପସାରଣ କରନ୍ତୁ.
\frac{\left(1-1\right)v^{1}+\left(1-3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-2v^{0}}{\left(v^{1}+1\right)^{2}}
1 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ ଏବଂ 1 ରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
\frac{-2v^{0}}{\left(v+1\right)^{2}}
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\frac{-2}{\left(v+1\right)^{2}}
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.