ମୂଲ୍ୟାୟନ କରିବା
\frac{t^{4}}{sr^{7}}
w.r.t. s ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
-\frac{t^{4}}{s^{2}r^{7}}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{r^{-1}s^{-1}t}{r^{6}s^{-1}t^{-1}st^{-2}}
ସମାନ ଆଧାରର ପାୱାର୍ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. 6 ପାଇବାକୁ -1 ଏବଂ 7 ଯୋଡନ୍ତୁ.
\frac{r^{-1}s^{-1}t}{r^{6}t^{-1}t^{-2}}
1 ପ୍ରାପ୍ତ କରିବାକୁ s^{-1} ଏବଂ s ଗୁଣନ କରନ୍ତୁ.
\frac{r^{-1}s^{-1}t}{r^{6}t^{-3}}
ସମାନ ଆଧାରର ପାୱାର୍ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. -3 ପାଇବାକୁ -1 ଏବଂ -2 ଯୋଡନ୍ତୁ.
\frac{\frac{1}{r}\times \frac{1}{s}t^{4}}{r^{6}}
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{1}{s}t^{4}}{r^{7}}
ସମାନ ଆଧାରର ଘାତ ବା ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{t^{4}}{s}}{r^{7}}
\frac{1}{s}t^{4} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{t^{4}}{sr^{7}}
\frac{\frac{t^{4}}{s}}{r^{7}} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}