p ପାଇଁ ସମାଧାନ କରନ୍ତୁ
p=1
p=4
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
p+5=1-p\left(p-6\right)
ଭାରିଏବୁଲ୍ p ମୂଲ୍ୟଗୁଡିକ -1,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ p\left(p+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, p^{2}+p,p+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
p+5=1-\left(p^{2}-6p\right)
p କୁ p-6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
p+5=1-p^{2}+6p
p^{2}-6p ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
p+5-1=-p^{2}+6p
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
p+4=-p^{2}+6p
4 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
p+4+p^{2}=6p
ଉଭୟ ପାର୍ଶ୍ଵକୁ p^{2} ଯୋଡନ୍ତୁ.
p+4+p^{2}-6p=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6p ବିୟୋଗ କରନ୍ତୁ.
-5p+4+p^{2}=0
-5p ପାଇବାକୁ p ଏବଂ -6p ସମ୍ମେଳନ କରନ୍ତୁ.
p^{2}-5p+4=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-5 ab=4
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right) ବ୍ୟବହାର କରି p^{2}-5p+4 ର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-4 -2,-2
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 4 ପ୍ରଦାନ କରିଥାଏ.
-1-4=-5 -2-2=-4
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-4 b=-1
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -5 ପ୍ରଦାନ କରିଥାଏ.
\left(p-4\right)\left(p-1\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(p+a\right)\left(p+b\right) ପୁନଃଲେଖନ୍ତୁ.
p=4 p=1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, p-4=0 ଏବଂ p-1=0 ସମାଧାନ କରନ୍ତୁ.
p+5=1-p\left(p-6\right)
ଭାରିଏବୁଲ୍ p ମୂଲ୍ୟଗୁଡିକ -1,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ p\left(p+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, p^{2}+p,p+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
p+5=1-\left(p^{2}-6p\right)
p କୁ p-6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
p+5=1-p^{2}+6p
p^{2}-6p ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
p+5-1=-p^{2}+6p
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
p+4=-p^{2}+6p
4 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
p+4+p^{2}=6p
ଉଭୟ ପାର୍ଶ୍ଵକୁ p^{2} ଯୋଡନ୍ତୁ.
p+4+p^{2}-6p=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6p ବିୟୋଗ କରନ୍ତୁ.
-5p+4+p^{2}=0
-5p ପାଇବାକୁ p ଏବଂ -6p ସମ୍ମେଳନ କରନ୍ତୁ.
p^{2}-5p+4=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-5 ab=1\times 4=4
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ p^{2}+ap+bp+4 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-4 -2,-2
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 4 ପ୍ରଦାନ କରିଥାଏ.
-1-4=-5 -2-2=-4
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-4 b=-1
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -5 ପ୍ରଦାନ କରିଥାଏ.
\left(p^{2}-4p\right)+\left(-p+4\right)
\left(p^{2}-4p\right)+\left(-p+4\right) ଭାବରେ p^{2}-5p+4 ପୁନଃ ଲେଖନ୍ତୁ.
p\left(p-4\right)-\left(p-4\right)
ପ୍ରଥମଟିରେ p ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -1 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(p-4\right)\left(p-1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ p-4 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
p=4 p=1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, p-4=0 ଏବଂ p-1=0 ସମାଧାନ କରନ୍ତୁ.
p+5=1-p\left(p-6\right)
ଭାରିଏବୁଲ୍ p ମୂଲ୍ୟଗୁଡିକ -1,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ p\left(p+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, p^{2}+p,p+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
p+5=1-\left(p^{2}-6p\right)
p କୁ p-6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
p+5=1-p^{2}+6p
p^{2}-6p ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
p+5-1=-p^{2}+6p
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
p+4=-p^{2}+6p
4 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
p+4+p^{2}=6p
ଉଭୟ ପାର୍ଶ୍ଵକୁ p^{2} ଯୋଡନ୍ତୁ.
p+4+p^{2}-6p=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6p ବିୟୋଗ କରନ୍ତୁ.
-5p+4+p^{2}=0
-5p ପାଇବାକୁ p ଏବଂ -6p ସମ୍ମେଳନ କରନ୍ତୁ.
p^{2}-5p+4=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
p=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -5, ଏବଂ c ପାଇଁ 4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
p=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
ବର୍ଗ -5.
p=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{-\left(-5\right)±\sqrt{9}}{2}
25 କୁ -16 ସହ ଯୋଡନ୍ତୁ.
p=\frac{-\left(-5\right)±3}{2}
9 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
p=\frac{5±3}{2}
-5 ର ବିପରୀତ ହେଉଛି 5.
p=\frac{8}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ p=\frac{5±3}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 5 କୁ 3 ସହ ଯୋଡନ୍ତୁ.
p=4
8 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
p=\frac{2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ p=\frac{5±3}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 5 ରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
p=1
2 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
p=4 p=1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
p+5=1-p\left(p-6\right)
ଭାରିଏବୁଲ୍ p ମୂଲ୍ୟଗୁଡିକ -1,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ p\left(p+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, p^{2}+p,p+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
p+5=1-\left(p^{2}-6p\right)
p କୁ p-6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
p+5=1-p^{2}+6p
p^{2}-6p ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
p+5+p^{2}=1+6p
ଉଭୟ ପାର୍ଶ୍ଵକୁ p^{2} ଯୋଡନ୍ତୁ.
p+5+p^{2}-6p=1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6p ବିୟୋଗ କରନ୍ତୁ.
-5p+5+p^{2}=1
-5p ପାଇବାକୁ p ଏବଂ -6p ସମ୍ମେଳନ କରନ୍ତୁ.
-5p+p^{2}=1-5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
-5p+p^{2}=-4
-4 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 5 ବିୟୋଗ କରନ୍ତୁ.
p^{2}-5p=-4
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
p^{2}-5p+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -5 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
p^{2}-5p+\frac{25}{4}=-4+\frac{25}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
p^{2}-5p+\frac{25}{4}=\frac{9}{4}
-4 କୁ \frac{25}{4} ସହ ଯୋଡନ୍ତୁ.
\left(p-\frac{5}{2}\right)^{2}=\frac{9}{4}
ଗୁଣନୀୟକ p^{2}-5p+\frac{25}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(p-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
p-\frac{5}{2}=\frac{3}{2} p-\frac{5}{2}=-\frac{3}{2}
ସରଳୀକୃତ କରିବା.
p=4 p=1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{2} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}