x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=arcSin(y^{-1})+2\pi n_{9}\text{, }n_{9}\in \mathrm{Z}\text{, }\exists n_{4}\in \mathrm{Z}\text{ : }\left(\left(n_{4}\text{bmod}2=1\text{ and }not(y>-1)\text{ and }n_{4}=\left(-1\right)\left(2+\left(-2\right)n_{9}\right)\right)\text{ or }\left(not(|y|<1)\text{ and }y>\left(-1\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=1\text{ and }n_{4}=\left(-1\right)\left(2+\left(-2\right)n_{9}\right)\right)\text{ or }\left(y>\left(-1\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }not(y>-1)\text{ and }n_{4}=\left(-1\right)\left(2+\left(-2\right)n_{9}\right)\right)\text{ or }\left(n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }not(y<1)\text{ and }n_{4}=\left(-1\right)\left(2+\left(-2\right)n_{9}\right)\right)\text{ or }\left(not(|y|<1)\text{ and }y<\left(-1\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }n_{4}=\left(-1\right)\left(2+\left(-2\right)n_{9}\right)\right)\text{ or }\left(y<\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }not(y<1)\text{ and }n_{4}=2n_{9}\right)\text{ or }\left(n_{4}\text{bmod}2=1\text{ and }not(y<1)\text{ and }n_{4}=2n_{9}\right)\text{ or }\left(n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{9})\text{ and }y>\left(-1\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{9}\right))\text{ and }not(y<1)\right)\text{ or }\left(y<\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=1\text{ and }not(|y|<1)\text{ and }n_{4}=2n_{9}\right)\text{ or }\left(y<\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{9})\text{ and }not(|y|<1)\text{ and }y<\left(-1\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{9}\right))\right)\text{ or }\left(y<\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{9})\text{ and }not(|y|<1)\text{ and }y>\left(-1\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{9}\right))\right)\text{ or }\left(y<\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{9})\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{9}\right))\text{ and }not(y>-1)\right)\text{ or }\left(y>\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }not(|y|<1)\text{ and }n_{4}=2n_{9}\right)\text{ or }\left(y>\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{9})\text{ and }not(|y|<1)\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{9}\right))\text{ and }not(y=\left(-1\right)\left(-1\right)^{\left(-1\right)n_{4}})\right)\text{ or }\left(n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }not(y>-1)\text{ and }n_{4}=2n_{9}\right)\text{ or }\left(n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{9})\text{ and }not(y>-1)\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{9}\right))\right)\text{ or }\left(n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{9})\text{ and }not(y<1)\text{ and }n_{4}\text{bmod}2=0\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{9}\right))\right)\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }arcSin(y^{-1})+2\pi n_{9}=\frac{1}{2}\pi +\pi n_{1}
x=\pi +2n_{18}\pi +\left(-1\right)arcSin(y^{-1})\text{, }n_{18}\in \mathrm{Z}\text{, }\exists n_{4}\in \mathrm{Z}\text{ : }\left(\left(n_{18}>\frac{1}{2}n_{4}-\frac{1}{4}+\frac{1}{2}\pi ^{-1}arcSin(y^{-1})\text{ and }not(|y|<1)\right)\text{ and }\pi +2n_{18}\pi +\left(-1\right)arcSin(y^{-1})<\pi \left(n_{4}+\frac{3}{2}\right)\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\pi +2n_{18}\pi +\left(-1\right)arcSin(y^{-1})=\frac{1}{2}\pi +\pi n_{1}
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
y=\frac{1}{\sin(x)}
\exists n_{1}\in \mathrm{Z}\text{ : }\left(x>\frac{\pi n_{1}}{2}\text{ and }x<\frac{\pi n_{1}}{2}+\frac{\pi }{2}\right)
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}