ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
m ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{9}{4}m^{2}-5m+1=0
ଅସମତାକୁ ସମାଧାନ କରିବାକୁ, ହାମ ହାତ ପାର୍ଶ୍ୱର ଗୁଣକ ବାହାର କରନ୍ତୁ. ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
m=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times \frac{9}{4}\times 1}}{2\times \frac{9}{4}}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ \frac{9}{4}, b ପାଇଁ -5, ଏବଂ c ପାଇଁ 1 କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
m=\frac{5±4}{\frac{9}{2}}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
m=2 m=\frac{2}{9}
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ m=\frac{5±4}{\frac{9}{2}} ସମାଧାନ କରନ୍ତୁ.
\frac{9}{4}\left(m-2\right)\left(m-\frac{2}{9}\right)>0
ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଅସମତାକୁ ପୁନଃ ଲେଖନ୍ତୁ.
m-2<0 m-\frac{2}{9}<0
ଉତ୍ପାଦ ଧନାତ୍ମକ ହେବା ପାଇଁ, m-2 ଏବଂ m-\frac{2}{9} ଉଭୟ ଋଣାତ୍ମକ କିମ୍ବା ଉଭୟ ଧନାତ୍ମକ ହେବା ଆବଶ୍ୟକ. ଯେତେବେଳେ m-2 ଏବଂ m-\frac{2}{9} ଉଭୟ ନେଗେଟିଭ୍‌ ରହିଥାଏ କେସ୍‌ ବିଚାର କରନ୍ତୁ.
m<\frac{2}{9}
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି m<\frac{2}{9}.
m-\frac{2}{9}>0 m-2>0
ଯେତେବେଳେ m-2 ଏବଂ m-\frac{2}{9} ଉଭୟ ଧନାତ୍ମକ ରହିଥାଏ କେସ୍‌ ବିଚାର କରନ୍ତୁ.
m>2
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି m>2.
m<\frac{2}{9}\text{; }m>2
ଚୁଡାନ୍ତ ସମାଧାନ ହେଉଛି ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକର ଯୋଗ ଅଟେ.