ମୂଲ୍ୟାୟନ କରିବା
\frac{2r^{2}-25r+59}{2r-5}
w.r.t. r ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
\frac{4r^{2}-20r+7}{\left(2r-5\right)^{2}}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{9}{2r-5}+\frac{\left(r-10\right)\left(2r-5\right)}{2r-5}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. r-10 କୁ \frac{2r-5}{2r-5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{9+\left(r-10\right)\left(2r-5\right)}{2r-5}
ଯେହେତୁ \frac{9}{2r-5} ଏବଂ \frac{\left(r-10\right)\left(2r-5\right)}{2r-5} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{9+2r^{2}-5r-20r+50}{2r-5}
9+\left(r-10\right)\left(2r-5\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{59+2r^{2}-25r}{2r-5}
9+2r^{2}-5r-20r+50ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{9}{2r-5}+\frac{\left(r-10\right)\left(2r-5\right)}{2r-5})
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. r-10 କୁ \frac{2r-5}{2r-5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{9+\left(r-10\right)\left(2r-5\right)}{2r-5})
ଯେହେତୁ \frac{9}{2r-5} ଏବଂ \frac{\left(r-10\right)\left(2r-5\right)}{2r-5} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{9+2r^{2}-5r-20r+50}{2r-5})
9+\left(r-10\right)\left(2r-5\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{59+2r^{2}-25r}{2r-5})
9+2r^{2}-5r-20r+50ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(2r^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}r}(2r^{2}-25r^{1}+59)-\left(2r^{2}-25r^{1}+59\right)\frac{\mathrm{d}}{\mathrm{d}r}(2r^{1}-5)}{\left(2r^{1}-5\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍ଯୋଗ୍ୟ ଫଙ୍କସନ୍ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\left(2r^{1}-5\right)\left(2\times 2r^{2-1}-25r^{1-1}\right)-\left(2r^{2}-25r^{1}+59\right)\times 2r^{1-1}}{\left(2r^{1}-5\right)^{2}}
ଏକ ପଲିନୋମିଆଲ୍ର ଡେରିଭେଟିଭ୍ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍ ହେଉଛି nax^{n-1}.
\frac{\left(2r^{1}-5\right)\left(4r^{1}-25r^{0}\right)-\left(2r^{2}-25r^{1}+59\right)\times 2r^{0}}{\left(2r^{1}-5\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{2r^{1}\times 4r^{1}+2r^{1}\left(-25\right)r^{0}-5\times 4r^{1}-5\left(-25\right)r^{0}-\left(2r^{2}-25r^{1}+59\right)\times 2r^{0}}{\left(2r^{1}-5\right)^{2}}
2r^{1}-5 କୁ 4r^{1}-25r^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2r^{1}\times 4r^{1}+2r^{1}\left(-25\right)r^{0}-5\times 4r^{1}-5\left(-25\right)r^{0}-\left(2r^{2}\times 2r^{0}-25r^{1}\times 2r^{0}+59\times 2r^{0}\right)}{\left(2r^{1}-5\right)^{2}}
2r^{2}-25r^{1}+59 କୁ 2r^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2\times 4r^{1+1}+2\left(-25\right)r^{1}-5\times 4r^{1}-5\left(-25\right)r^{0}-\left(2\times 2r^{2}-25\times 2r^{1}+59\times 2r^{0}\right)}{\left(2r^{1}-5\right)^{2}}
ସମାନ ଆଧାର ବା ବେସ୍ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
\frac{8r^{2}-50r^{1}-20r^{1}+125r^{0}-\left(4r^{2}-50r^{1}+118r^{0}\right)}{\left(2r^{1}-5\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{4r^{2}-20r^{1}+7r^{0}}{\left(2r^{1}-5\right)^{2}}
ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{4r^{2}-20r+7r^{0}}{\left(2r-5\right)^{2}}
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\frac{4r^{2}-20r+7\times 1}{\left(2r-5\right)^{2}}
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.
\frac{4r^{2}-20r+7}{\left(2r-5\right)^{2}}
ଯେ କୌଣସି ପଦ t, t\times 1=t ଏବଂ 1t=t ପାଇଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}