ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ପ୍ରସାରଣ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{6m+mn}{4mn^{2}}-36
\frac{\frac{6m+mn}{4m}}{n^{2}} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{m\left(n+6\right)}{4mn^{2}}-36
\frac{6m+mn}{4mn^{2}} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{n+6}{4n^{2}}-36
ଉଭୟ ଲବ ଓ ହରରେ m ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{n+6}{4n^{2}}-\frac{36\times 4n^{2}}{4n^{2}}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 36 କୁ \frac{4n^{2}}{4n^{2}} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{n+6-36\times 4n^{2}}{4n^{2}}
ଯେହେତୁ \frac{n+6}{4n^{2}} ଏବଂ \frac{36\times 4n^{2}}{4n^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{n+6-144n^{2}}{4n^{2}}
n+6-36\times 4n^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-144\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{4n^{2}}
\frac{n+6-144n^{2}}{4n^{2}} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{-36\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
ଉଭୟ ଲବ ଓ ହରରେ 4 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
-\frac{1}{288}\sqrt{3457}+\frac{1}{288} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
\frac{1}{288}\sqrt{3457}+\frac{1}{288} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
\frac{\left(-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
-36 କୁ n+\frac{1}{288}\sqrt{3457}-\frac{1}{288} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\left(\sqrt{3457}\right)^{2}-\frac{1}{2304}}{n^{2}}
-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8} କୁ n-\frac{1}{288}\sqrt{3457}-\frac{1}{288} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\times 3457-\frac{1}{2304}}{n^{2}}
\sqrt{3457} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3457.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3457}{2304}-\frac{1}{2304}}{n^{2}}
\frac{3457}{2304} ପ୍ରାପ୍ତ କରିବାକୁ \frac{1}{2304} ଏବଂ 3457 ଗୁଣନ କରନ୍ତୁ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3}{2}}{n^{2}}
\frac{3}{2} ପ୍ରାପ୍ତ କରିବାକୁ \frac{3457}{2304} ଏବଂ \frac{1}{2304} ବିୟୋଗ କରନ୍ତୁ.
\frac{6m+mn}{4mn^{2}}-36
\frac{\frac{6m+mn}{4m}}{n^{2}} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{m\left(n+6\right)}{4mn^{2}}-36
\frac{6m+mn}{4mn^{2}} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{n+6}{4n^{2}}-36
ଉଭୟ ଲବ ଓ ହରରେ m ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{n+6}{4n^{2}}-\frac{36\times 4n^{2}}{4n^{2}}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 36 କୁ \frac{4n^{2}}{4n^{2}} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{n+6-36\times 4n^{2}}{4n^{2}}
ଯେହେତୁ \frac{n+6}{4n^{2}} ଏବଂ \frac{36\times 4n^{2}}{4n^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{n+6-144n^{2}}{4n^{2}}
n+6-36\times 4n^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-144\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{4n^{2}}
\frac{n+6-144n^{2}}{4n^{2}} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{-36\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
ଉଭୟ ଲବ ଓ ହରରେ 4 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
-\frac{1}{288}\sqrt{3457}+\frac{1}{288} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
\frac{1}{288}\sqrt{3457}+\frac{1}{288} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
\frac{\left(-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
-36 କୁ n+\frac{1}{288}\sqrt{3457}-\frac{1}{288} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\left(\sqrt{3457}\right)^{2}-\frac{1}{2304}}{n^{2}}
-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8} କୁ n-\frac{1}{288}\sqrt{3457}-\frac{1}{288} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\times 3457-\frac{1}{2304}}{n^{2}}
\sqrt{3457} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3457.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3457}{2304}-\frac{1}{2304}}{n^{2}}
\frac{3457}{2304} ପ୍ରାପ୍ତ କରିବାକୁ \frac{1}{2304} ଏବଂ 3457 ଗୁଣନ କରନ୍ତୁ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3}{2}}{n^{2}}
\frac{3}{2} ପ୍ରାପ୍ତ କରିବାକୁ \frac{3457}{2304} ଏବଂ \frac{1}{2304} ବିୟୋଗ କରନ୍ତୁ.