ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. a ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{6\left(a-5\right)}{\left(a-5\right)\left(a+2\right)}+\frac{a+2}{\left(a-5\right)\left(a+2\right)}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. a+2 ଏବଂ a-5 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି \left(a-5\right)\left(a+2\right). \frac{6}{a+2} କୁ \frac{a-5}{a-5} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{1}{a-5} କୁ \frac{a+2}{a+2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{6\left(a-5\right)+a+2}{\left(a-5\right)\left(a+2\right)}
ଯେହେତୁ \frac{6\left(a-5\right)}{\left(a-5\right)\left(a+2\right)} ଏବଂ \frac{a+2}{\left(a-5\right)\left(a+2\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{6a-30+a+2}{\left(a-5\right)\left(a+2\right)}
6\left(a-5\right)+a+2 ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{7a-28}{\left(a-5\right)\left(a+2\right)}
6a-30+a+2ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{7a-28}{a^{2}-3a-10}
ବିସ୍ତାର କରନ୍ତୁ \left(a-5\right)\left(a+2\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{6\left(a-5\right)}{\left(a-5\right)\left(a+2\right)}+\frac{a+2}{\left(a-5\right)\left(a+2\right)})
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. a+2 ଏବଂ a-5 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି \left(a-5\right)\left(a+2\right). \frac{6}{a+2} କୁ \frac{a-5}{a-5} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{1}{a-5} କୁ \frac{a+2}{a+2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{6\left(a-5\right)+a+2}{\left(a-5\right)\left(a+2\right)})
ଯେହେତୁ \frac{6\left(a-5\right)}{\left(a-5\right)\left(a+2\right)} ଏବଂ \frac{a+2}{\left(a-5\right)\left(a+2\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{6a-30+a+2}{\left(a-5\right)\left(a+2\right)})
6\left(a-5\right)+a+2 ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{7a-28}{\left(a-5\right)\left(a+2\right)})
6a-30+a+2ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{7a-28}{a^{2}+2a-5a-10})
a-5 ର ପ୍ରତିଟି ପଦକୁ a+2 ର ପ୍ରତିଟି ପଦ ଦ୍ୱାରା ଗୁଣନ କରି ବିତରଣ ସଂକ୍ରାଣ ଗୁଣଧର୍ମ ପ୍ରୟୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{7a-28}{a^{2}-3a-10})
-3a ପାଇବାକୁ 2a ଏବଂ -5a ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(a^{2}-3a^{1}-10\right)\frac{\mathrm{d}}{\mathrm{d}a}(7a^{1}-28)-\left(7a^{1}-28\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-3a^{1}-10)}{\left(a^{2}-3a^{1}-10\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍‌ଯୋଗ୍ୟ ଫଙ୍କସନ୍‌ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍‌ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍‌ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍‌ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\left(a^{2}-3a^{1}-10\right)\times 7a^{1-1}-\left(7a^{1}-28\right)\left(2a^{2-1}-3a^{1-1}\right)}{\left(a^{2}-3a^{1}-10\right)^{2}}
ଏକ ପଲିନୋମିଆଲ୍‌ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍‌ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍‌ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି nax^{n-1}.
\frac{\left(a^{2}-3a^{1}-10\right)\times 7a^{0}-\left(7a^{1}-28\right)\left(2a^{1}-3a^{0}\right)}{\left(a^{2}-3a^{1}-10\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{a^{2}\times 7a^{0}-3a^{1}\times 7a^{0}-10\times 7a^{0}-\left(7a^{1}-28\right)\left(2a^{1}-3a^{0}\right)}{\left(a^{2}-3a^{1}-10\right)^{2}}
a^{2}-3a^{1}-10 କୁ 7a^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{a^{2}\times 7a^{0}-3a^{1}\times 7a^{0}-10\times 7a^{0}-\left(7a^{1}\times 2a^{1}+7a^{1}\left(-3\right)a^{0}-28\times 2a^{1}-28\left(-3\right)a^{0}\right)}{\left(a^{2}-3a^{1}-10\right)^{2}}
7a^{1}-28 କୁ 2a^{1}-3a^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{7a^{2}-3\times 7a^{1}-10\times 7a^{0}-\left(7\times 2a^{1+1}+7\left(-3\right)a^{1}-28\times 2a^{1}-28\left(-3\right)a^{0}\right)}{\left(a^{2}-3a^{1}-10\right)^{2}}
ସମାନ ଆଧାର ବା ବେସ୍‌ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
\frac{7a^{2}-21a^{1}-70a^{0}-\left(14a^{2}-21a^{1}-56a^{1}+84a^{0}\right)}{\left(a^{2}-3a^{1}-10\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{-7a^{2}+56a^{1}-154a^{0}}{\left(a^{2}-3a^{1}-10\right)^{2}}
ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-7a^{2}+56a-154a^{0}}{\left(a^{2}-3a-10\right)^{2}}
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\frac{-7a^{2}+56a-154}{\left(a^{2}-3a-10\right)^{2}}
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.