ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. a ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{5\left(a+4\right)}{a\left(a+4\right)}+\frac{3a}{a\left(a+4\right)}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. a ଏବଂ a+4 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି a\left(a+4\right). \frac{5}{a} କୁ \frac{a+4}{a+4} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{3}{a+4} କୁ \frac{a}{a} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{5\left(a+4\right)+3a}{a\left(a+4\right)}
ଯେହେତୁ \frac{5\left(a+4\right)}{a\left(a+4\right)} ଏବଂ \frac{3a}{a\left(a+4\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{5a+20+3a}{a\left(a+4\right)}
5\left(a+4\right)+3a ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{8a+20}{a\left(a+4\right)}
5a+20+3aରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{8a+20}{a^{2}+4a}
ବିସ୍ତାର କରନ୍ତୁ a\left(a+4\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{5\left(a+4\right)}{a\left(a+4\right)}+\frac{3a}{a\left(a+4\right)})
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. a ଏବଂ a+4 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି a\left(a+4\right). \frac{5}{a} କୁ \frac{a+4}{a+4} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{3}{a+4} କୁ \frac{a}{a} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{5\left(a+4\right)+3a}{a\left(a+4\right)})
ଯେହେତୁ \frac{5\left(a+4\right)}{a\left(a+4\right)} ଏବଂ \frac{3a}{a\left(a+4\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{5a+20+3a}{a\left(a+4\right)})
5\left(a+4\right)+3a ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{8a+20}{a\left(a+4\right)})
5a+20+3aରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{8a+20}{a^{2}+4a})
a କୁ a+4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{\left(a^{2}+4a^{1}\right)\frac{\mathrm{d}}{\mathrm{d}a}(8a^{1}+20)-\left(8a^{1}+20\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}+4a^{1})}{\left(a^{2}+4a^{1}\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍‌ଯୋଗ୍ୟ ଫଙ୍କସନ୍‌ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍‌ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍‌ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍‌ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\left(a^{2}+4a^{1}\right)\times 8a^{1-1}-\left(8a^{1}+20\right)\left(2a^{2-1}+4a^{1-1}\right)}{\left(a^{2}+4a^{1}\right)^{2}}
ଏକ ପଲିନୋମିଆଲ୍‌ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍‌ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍‌ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି nax^{n-1}.
\frac{\left(a^{2}+4a^{1}\right)\times 8a^{0}-\left(8a^{1}+20\right)\left(2a^{1}+4a^{0}\right)}{\left(a^{2}+4a^{1}\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{a^{2}\times 8a^{0}+4a^{1}\times 8a^{0}-\left(8a^{1}+20\right)\left(2a^{1}+4a^{0}\right)}{\left(a^{2}+4a^{1}\right)^{2}}
a^{2}+4a^{1} କୁ 8a^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{a^{2}\times 8a^{0}+4a^{1}\times 8a^{0}-\left(8a^{1}\times 2a^{1}+8a^{1}\times 4a^{0}+20\times 2a^{1}+20\times 4a^{0}\right)}{\left(a^{2}+4a^{1}\right)^{2}}
8a^{1}+20 କୁ 2a^{1}+4a^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{8a^{2}+4\times 8a^{1}-\left(8\times 2a^{1+1}+8\times 4a^{1}+20\times 2a^{1}+20\times 4a^{0}\right)}{\left(a^{2}+4a^{1}\right)^{2}}
ସମାନ ଆଧାର ବା ବେସ୍‌ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
\frac{8a^{2}+32a^{1}-\left(16a^{2}+32a^{1}+40a^{1}+80a^{0}\right)}{\left(a^{2}+4a^{1}\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{-8a^{2}-40a^{1}-80a^{0}}{\left(a^{2}+4a^{1}\right)^{2}}
ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-8a^{2}-40a-80a^{0}}{\left(a^{2}+4a\right)^{2}}
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\frac{-8a^{2}-40a-80}{\left(a^{2}+4a\right)^{2}}
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.