ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x\left(\frac{5}{3}x+2\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=-\frac{6}{5}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ \frac{5x}{3}+2=0 ସମାଧାନ କରନ୍ତୁ.
\frac{5}{3}x^{2}+2x=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-2±\sqrt{2^{2}}}{2\times \frac{5}{3}}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ \frac{5}{3}, b ପାଇଁ 2, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±2}{2\times \frac{5}{3}}
2^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-2±2}{\frac{10}{3}}
2 କୁ \frac{5}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{0}{\frac{10}{3}}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2}{\frac{10}{3}} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2 ସହ ଯୋଡନ୍ତୁ.
x=0
\frac{10}{3} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା 0 କୁ ଗୁଣନ କରି 0 କୁ \frac{10}{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{4}{\frac{10}{3}}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2}{\frac{10}{3}} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{6}{5}
\frac{10}{3} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା -4 କୁ ଗୁଣନ କରି -4 କୁ \frac{10}{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=0 x=-\frac{6}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\frac{5}{3}x^{2}+2x=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{\frac{5}{3}x^{2}+2x}{\frac{5}{3}}=\frac{0}{\frac{5}{3}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{5}{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x^{2}+\frac{2}{\frac{5}{3}}x=\frac{0}{\frac{5}{3}}
\frac{5}{3} ଦ୍ୱାରା ବିଭାଜନ କରିବା \frac{5}{3} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{6}{5}x=\frac{0}{\frac{5}{3}}
\frac{5}{3} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା 2 କୁ ଗୁଣନ କରି 2 କୁ \frac{5}{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{6}{5}x=0
\frac{5}{3} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା 0 କୁ ଗୁଣନ କରି 0 କୁ \frac{5}{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\left(\frac{3}{5}\right)^{2}
\frac{3}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{6}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{9}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x+\frac{3}{5}\right)^{2}=\frac{9}{25}
ଗୁଣନୀୟକ x^{2}+\frac{6}{5}x+\frac{9}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{5}=\frac{3}{5} x+\frac{3}{5}=-\frac{3}{5}
ସରଳୀକୃତ କରିବା.
x=0 x=-\frac{6}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{5} ବିୟୋଗ କରନ୍ତୁ.