ମୂଲ୍ୟାୟନ କରିବା
3
ଗୁଣକ
3
କ୍ୱିଜ୍
Arithmetic
5 ଟି ପ୍ରଶ୍ନ ଏହି ପରି ଅଟେ:
\frac { 5 } { 12 } + \frac { 2 } { 8 } + \frac { 21 } { 9 } )
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{5}{12}+\frac{1}{4}+\frac{21}{9}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{2}{8} ହ୍ରାସ କରନ୍ତୁ.
\frac{5}{12}+\frac{3}{12}+\frac{21}{9}
12 ଏବଂ 4 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 12. \frac{5}{12} ଏବଂ \frac{1}{4} କୁ 12 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{5+3}{12}+\frac{21}{9}
ଯେହେତୁ \frac{5}{12} ଏବଂ \frac{3}{12} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{8}{12}+\frac{21}{9}
8 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
\frac{2}{3}+\frac{21}{9}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{8}{12} ହ୍ରାସ କରନ୍ତୁ.
\frac{2}{3}+\frac{7}{3}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{21}{9} ହ୍ରାସ କରନ୍ତୁ.
\frac{2+7}{3}
ଯେହେତୁ \frac{2}{3} ଏବଂ \frac{7}{3} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{9}{3}
9 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 7 ଯୋଗ କରନ୍ତୁ.
3
3 ପ୍ରାପ୍ତ କରିବାକୁ 9 କୁ 3 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}