m ପାଇଁ ସମାଧାନ କରନ୍ତୁ
m=-3
m ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
m=\frac{2\pi n_{1}i}{\ln(5)}-3
n_{1}\in \mathrm{Z}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{5^{m}\times 5^{1}}{5^{-3}}=5^{1}
ସମାନ ଆଧାରର ପାୱାର୍ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. 1 ପାଇବାକୁ 3 ଏବଂ -2 ଯୋଡନ୍ତୁ.
5^{4}\times 5^{m}=5^{1}
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
5^{4}\times 5^{m}=5
1 ର 5 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 5 ପ୍ରାପ୍ତ କରନ୍ତୁ.
625\times 5^{m}=5
4 ର 5 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 625 ପ୍ରାପ୍ତ କରନ୍ତୁ.
5^{m}=\frac{5}{625}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 625 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
5^{m}=\frac{1}{125}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{5}{625} ହ୍ରାସ କରନ୍ତୁ.
\log(5^{m})=\log(\frac{1}{125})
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ଲଗାରିଦିମ୍ ବାହାର କରନ୍ତୁ.
m\log(5)=\log(\frac{1}{125})
ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି ହୋଇଥିବା ଏକ ସଂଖ୍ୟାର ଲଗାରିଦମ୍ ଏହି ସଂଖ୍ୟାର ଲଗାରିଦମ୍ର ପାୱାର୍ ଗୁଣା ହୋଇଥାଏ.
m=\frac{\log(\frac{1}{125})}{\log(5)}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \log(5) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=\log_{5}\left(\frac{1}{125}\right)
ମୂଳ-ପରିବର୍ତ୍ତନ କରିବା ସୂତ୍ର ଅନୁସାରେ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}