x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{\sqrt{57} + 9}{2} \approx 8.274917218
x=\frac{9-\sqrt{57}}{2}\approx 0.725082782
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x\times 4+\left(x-3\right)\times 2=x\left(x-3\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ 0,3 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ x\left(x-3\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-3,x ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x\times 4+2x-6=x\left(x-3\right)
x-3 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x-6=x\left(x-3\right)
6x ପାଇବାକୁ x\times 4 ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
6x-6=x^{2}-3x
x କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x-6-x^{2}=-3x
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
6x-6-x^{2}+3x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3x ଯୋଡନ୍ତୁ.
9x-6-x^{2}=0
9x ପାଇବାକୁ 6x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
-x^{2}+9x-6=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 9, ଏବଂ c ପାଇଁ -6 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
ବର୍ଗ 9.
x=\frac{-9±\sqrt{81+4\left(-6\right)}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-9±\sqrt{81-24}}{2\left(-1\right)}
4 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-9±\sqrt{57}}{2\left(-1\right)}
81 କୁ -24 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-9±\sqrt{57}}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{57}-9}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-9±\sqrt{57}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -9 କୁ \sqrt{57} ସହ ଯୋଡନ୍ତୁ.
x=\frac{9-\sqrt{57}}{2}
-9+\sqrt{57} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{57}-9}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-9±\sqrt{57}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -9 ରୁ \sqrt{57} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{57}+9}{2}
-9-\sqrt{57} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{9-\sqrt{57}}{2} x=\frac{\sqrt{57}+9}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x\times 4+\left(x-3\right)\times 2=x\left(x-3\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ 0,3 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ x\left(x-3\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-3,x ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x\times 4+2x-6=x\left(x-3\right)
x-3 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x-6=x\left(x-3\right)
6x ପାଇବାକୁ x\times 4 ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
6x-6=x^{2}-3x
x କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x-6-x^{2}=-3x
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
6x-6-x^{2}+3x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3x ଯୋଡନ୍ତୁ.
9x-6-x^{2}=0
9x ପାଇବାକୁ 6x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
9x-x^{2}=6
ଉଭୟ ପାର୍ଶ୍ଵକୁ 6 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
-x^{2}+9x=6
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-x^{2}+9x}{-1}=\frac{6}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{9}{-1}x=\frac{6}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-9x=\frac{6}{-1}
9 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-9x=-6
6 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-6+\left(-\frac{9}{2}\right)^{2}
-\frac{9}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -9 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{9}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-9x+\frac{81}{4}=-6+\frac{81}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{9}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-9x+\frac{81}{4}=\frac{57}{4}
-6 କୁ \frac{81}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{9}{2}\right)^{2}=\frac{57}{4}
ଗୁଣନୀୟକ x^{2}-9x+\frac{81}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{57}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{9}{2}=\frac{\sqrt{57}}{2} x-\frac{9}{2}=-\frac{\sqrt{57}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{57}+9}{2} x=\frac{9-\sqrt{57}}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{9}{2} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}