ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(x+1\right)\times 4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -1,1 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-1\right)\left(x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-1,x+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
4x+4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
x+1 କୁ 4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x+4+2x-2=3\left(x-1\right)\left(x+1\right)
x-1 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x+4-2=3\left(x-1\right)\left(x+1\right)
6x ପାଇବାକୁ 4x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
6x+2=3\left(x-1\right)\left(x+1\right)
2 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
6x+2=\left(3x-3\right)\left(x+1\right)
3 କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x+2=3x^{2}-3
3x-3 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
6x+2-3x^{2}=-3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x^{2} ବିୟୋଗ କରନ୍ତୁ.
6x+2-3x^{2}+3=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3 ଯୋଡନ୍ତୁ.
6x+5-3x^{2}=0
5 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
-3x^{2}+6x+5=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -3, b ପାଇଁ 6, ଏବଂ c ପାଇଁ 5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-6±\sqrt{36-4\left(-3\right)\times 5}}{2\left(-3\right)}
ବର୍ଗ 6.
x=\frac{-6±\sqrt{36+12\times 5}}{2\left(-3\right)}
-4 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-6±\sqrt{36+60}}{2\left(-3\right)}
12 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-6±\sqrt{96}}{2\left(-3\right)}
36 କୁ 60 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-6±4\sqrt{6}}{2\left(-3\right)}
96 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-6±4\sqrt{6}}{-6}
2 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4\sqrt{6}-6}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-6±4\sqrt{6}}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -6 କୁ 4\sqrt{6} ସହ ଯୋଡନ୍ତୁ.
x=-\frac{2\sqrt{6}}{3}+1
-6+4\sqrt{6} କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-4\sqrt{6}-6}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-6±4\sqrt{6}}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -6 ରୁ 4\sqrt{6} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{2\sqrt{6}}{3}+1
-6-4\sqrt{6} କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{2\sqrt{6}}{3}+1 x=\frac{2\sqrt{6}}{3}+1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\left(x+1\right)\times 4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -1,1 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-1\right)\left(x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-1,x+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
4x+4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
x+1 କୁ 4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x+4+2x-2=3\left(x-1\right)\left(x+1\right)
x-1 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x+4-2=3\left(x-1\right)\left(x+1\right)
6x ପାଇବାକୁ 4x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
6x+2=3\left(x-1\right)\left(x+1\right)
2 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
6x+2=\left(3x-3\right)\left(x+1\right)
3 କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x+2=3x^{2}-3
3x-3 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
6x+2-3x^{2}=-3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x^{2} ବିୟୋଗ କରନ୍ତୁ.
6x-3x^{2}=-3-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
6x-3x^{2}=-5
-5 ପ୍ରାପ୍ତ କରିବାକୁ -3 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
-3x^{2}+6x=-5
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-3x^{2}+6x}{-3}=-\frac{5}{-3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{6}{-3}x=-\frac{5}{-3}
-3 ଦ୍ୱାରା ବିଭାଜନ କରିବା -3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-2x=-\frac{5}{-3}
6 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x=\frac{5}{3}
-5 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x+1=\frac{5}{3}+1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-2x+1=\frac{8}{3}
\frac{5}{3} କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x-1\right)^{2}=\frac{8}{3}
ଗୁଣନୀୟକ x^{2}-2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{8}{3}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-1=\frac{2\sqrt{6}}{3} x-1=-\frac{2\sqrt{6}}{3}
ସରଳୀକୃତ କରିବା.
x=\frac{2\sqrt{6}}{3}+1 x=-\frac{2\sqrt{6}}{3}+1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.