ମୂଲ୍ୟାୟନ କରିବା
\frac{36x^{8}y^{10}}{29}
w.r.t. x ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
\frac{288x^{7}y^{10}}{29}
କ୍ୱିଜ୍
Algebra
5 ଟି ପ୍ରଶ୍ନ ଏହି ପରି ଅଟେ:
\frac { 36 x ^ { 16 } y ^ { 18 } } { 29 x ^ { 8 } y ^ { 8 } }
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{36^{1}x^{16}y^{18}}{29^{1}x^{8}y^{8}}
ଅଭିବ୍ୟକ୍ତିଙ୍କୁ ସରଳୀକୃତ କରିବା ପାଇଁ ଘାତାଙ୍କର ନିୟମଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{36^{1}}{29^{1}}x^{16-8}y^{18-8}
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{36^{1}}{29^{1}}x^{8}y^{18-8}
16 ରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
\frac{36^{1}}{29^{1}}x^{8}y^{10}
18 ରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
\frac{36}{29}x^{8}y^{10}
36 କୁ 29 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{36y^{18}}{29y^{8}}x^{16-8})
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{36y^{10}}{29}x^{8})
ପାଟୀଗଣିତ କରନ୍ତୁ.
8\times \frac{36y^{10}}{29}x^{8-1}
ଏକ ପଲିନୋମିଆଲ୍ର ଡେରିଭେଟିଭ୍ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍ ହେଉଛି nax^{n-1}.
\frac{288y^{10}}{29}x^{7}
ପାଟୀଗଣିତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}