ମୂଲ୍ୟାୟନ କରିବା
\frac{n^{2}}{4}
w.r.t. n ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
\frac{n}{2}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{3n}{2}\times \frac{n}{6}
2 ଏବଂ 4 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 4 ବାତିଲ୍ କରନ୍ତୁ.
\frac{3nn}{2\times 6}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{3n}{2} କୁ \frac{n}{6} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{nn}{2\times 2}
ଉଭୟ ଲବ ଓ ହରରେ 3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{n^{2}}{2\times 2}
n^{2} ପ୍ରାପ୍ତ କରିବାକୁ n ଏବଂ n ଗୁଣନ କରନ୍ତୁ.
\frac{n^{2}}{4}
4 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{3n}{2}\times \frac{n}{6})
2 ଏବଂ 4 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 4 ବାତିଲ୍ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{3nn}{2\times 6})
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{3n}{2} କୁ \frac{n}{6} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{nn}{2\times 2})
ଉଭୟ ଲବ ଓ ହରରେ 3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{2}}{2\times 2})
n^{2} ପ୍ରାପ୍ତ କରିବାକୁ n ଏବଂ n ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{2}}{4})
4 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
2\times \frac{1}{4}n^{2-1}
ax^{n} ର ଉତ୍ପନ୍ନ ହେଉଛି nax^{n-1}.
\frac{1}{2}n^{2-1}
2 କୁ \frac{1}{4} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}n^{1}
2 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
\frac{1}{2}n
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}