t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
t>\frac{24}{17}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
5\times 3\left(2t-2\right)>2\left(6t-3\right)+t
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 2,5,10 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ. ଯେହେତୁ 10 ଧନାତ୍ମକ ଅଟେ, ଅସମାନତା ଦିଗ ସମାନ ରହିଥାଏ |
15\left(2t-2\right)>2\left(6t-3\right)+t
15 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
30t-30>2\left(6t-3\right)+t
15 କୁ 2t-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
30t-30>12t-6+t
2 କୁ 6t-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
30t-30>13t-6
13t ପାଇବାକୁ 12t ଏବଂ t ସମ୍ମେଳନ କରନ୍ତୁ.
30t-30-13t>-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ 13t ବିୟୋଗ କରନ୍ତୁ.
17t-30>-6
17t ପାଇବାକୁ 30t ଏବଂ -13t ସମ୍ମେଳନ କରନ୍ତୁ.
17t>-6+30
ଉଭୟ ପାର୍ଶ୍ଵକୁ 30 ଯୋଡନ୍ତୁ.
17t>24
24 ପ୍ରାପ୍ତ କରିବାକୁ -6 ଏବଂ 30 ଯୋଗ କରନ୍ତୁ.
t>\frac{24}{17}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 17 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ. ଯେହେତୁ 17 ଧନାତ୍ମକ ଅଟେ, ଅସମାନତା ଦିଗ ସମାନ ରହିଥାଏ |
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}