ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{3}{2}\times \frac{\sqrt{8}}{\sqrt{3}}
ସ୍କେୟାର୍ ରୁଟ୍‌ \frac{\sqrt{8}}{\sqrt{3}} ର ଡିଭିଜନ୍ ଭାବରେ ଡିଭିଜନ୍ \sqrt{\frac{8}{3}} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ.
\frac{3}{2}\times \frac{2\sqrt{2}}{\sqrt{3}}
ଗୁଣନିୟକ 8=2^{2}\times 2. ସ୍କେୟାର୍ ରୁଟ୍‌ \sqrt{2^{2}}\sqrt{2} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2^{2}\times 2} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 2^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\frac{3}{2}\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
ଲବ ଓ ହରକୁ \sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରି \frac{2\sqrt{2}}{\sqrt{3}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{3}{2}\times \frac{2\sqrt{2}\sqrt{3}}{3}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
\frac{3}{2}\times \frac{2\sqrt{6}}{3}
ଏକାଧିକ \sqrt{2} ଏବଂ \sqrt{3}କୁ, ସ୍କେୟାର୍ ରୁଟ୍‌ରେ ଏକାଧିକ ସଂଖ୍ୟା.
\frac{3\times 2\sqrt{6}}{2\times 3}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{3}{2} କୁ \frac{2\sqrt{6}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\sqrt{6}
ଉଭୟ ଲବ ଓ ହରରେ 2\times 3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.