ମୂଲ୍ୟାୟନ କରିବା
-\frac{r^{2}}{9}+\frac{25}{4}
ଗୁଣକ
\frac{\left(-2r-15\right)\left(2r-15\right)}{36}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{25\times 9}{36}-\frac{4r^{2}}{36}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 4 ଏବଂ 9 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 36. \frac{25}{4} କୁ \frac{9}{9} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{r^{2}}{9} କୁ \frac{4}{4} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{25\times 9-4r^{2}}{36}
ଯେହେତୁ \frac{25\times 9}{36} ଏବଂ \frac{4r^{2}}{36} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{225-4r^{2}}{36}
25\times 9-4r^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{225-4r^{2}}{36}
\frac{1}{36} ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(15-2r\right)\left(15+2r\right)
225-4r^{2}କୁ ବିବେଚନା କରନ୍ତୁ. 15^{2}-\left(2r\right)^{2} ଭାବରେ 225-4r^{2} ପୁନଃ ଲେଖନ୍ତୁ. ବର୍ଗଗୁଡ଼ିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟ ଏହି ନିୟମ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟର କରାଯାଇପାରିବ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-2r+15\right)\left(2r+15\right)
ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
\frac{\left(-2r+15\right)\left(2r+15\right)}{36}
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}