ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ପ୍ରସାରଣ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{2\left(y-3\right)}{\left(y-3\right)\left(y+3\right)}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
\frac{2y-6}{y^{2}-9} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{2}{y+3}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
ଉଭୟ ଲବ ଓ ହରରେ y-3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)}-\frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. y+3 ଏବଂ y-1 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି \left(y-1\right)\left(y+3\right). \frac{2}{y+3} କୁ \frac{y-1}{y-1} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{y}{y-1} କୁ \frac{y+3}{y+3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2\left(y-1\right)-y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
ଯେହେତୁ \frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)} ଏବଂ \frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{2y-2-y^{2}-3y}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
2\left(y-1\right)-y\left(y+3\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
2y-2-y^{2}-3yରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)}
ଗୁଣନିୟକ y^{2}+2y-3.
\frac{-y-2-y^{2}+y^{2}+2}{\left(y-1\right)\left(y+3\right)}
ଯେହେତୁ \frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)} ଏବଂ \frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{-y}{\left(y-1\right)\left(y+3\right)}
-y-2-y^{2}+y^{2}+2ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-y}{y^{2}+2y-3}
ବିସ୍ତାର କରନ୍ତୁ \left(y-1\right)\left(y+3\right).
\frac{2\left(y-3\right)}{\left(y-3\right)\left(y+3\right)}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
\frac{2y-6}{y^{2}-9} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{2}{y+3}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
ଉଭୟ ଲବ ଓ ହରରେ y-3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)}-\frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. y+3 ଏବଂ y-1 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି \left(y-1\right)\left(y+3\right). \frac{2}{y+3} କୁ \frac{y-1}{y-1} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{y}{y-1} କୁ \frac{y+3}{y+3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2\left(y-1\right)-y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
ଯେହେତୁ \frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)} ଏବଂ \frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{2y-2-y^{2}-3y}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
2\left(y-1\right)-y\left(y+3\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
2y-2-y^{2}-3yରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)}
ଗୁଣନିୟକ y^{2}+2y-3.
\frac{-y-2-y^{2}+y^{2}+2}{\left(y-1\right)\left(y+3\right)}
ଯେହେତୁ \frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)} ଏବଂ \frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{-y}{\left(y-1\right)\left(y+3\right)}
-y-2-y^{2}+y^{2}+2ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-y}{y^{2}+2y-3}
ବିସ୍ତାର କରନ୍ତୁ \left(y-1\right)\left(y+3\right).