ମୂଲ୍ୟାୟନ କରିବା
\frac{2}{q}
w.r.t. q ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
-\frac{2}{q^{2}}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(2q^{8}\right)^{1}\times \frac{1}{q^{9}}
ଅଭିବ୍ୟକ୍ତିଙ୍କୁ ସରଳୀକୃତ କରିବା ପାଇଁ ଘାତାଙ୍କର ନିୟମଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
2^{1}\left(q^{8}\right)^{1}\times \frac{1}{1}\times \frac{1}{q^{9}}
ଦୁଇ କିମ୍ବା ଅଧିକ ସଂଖ୍ୟାର ଉତ୍ପାଦ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ପ୍ରତ୍ୟେକ ସଂଖ୍ୟାକୁ ପାୱାର୍କୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ସେଗୁଡିକର ଉତ୍ପାଦ ନିଅନ୍ତୁ.
2^{1}\times \frac{1}{1}\left(q^{8}\right)^{1}\times \frac{1}{q^{9}}
ଗୁଣନର ବିନିମେୟ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2^{1}\times \frac{1}{1}q^{8}q^{9\left(-1\right)}
ଏକ ପାୱାର୍କୁ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
2^{1}\times \frac{1}{1}q^{8}q^{-9}
9 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
2^{1}\times \frac{1}{1}q^{8-9}
ସମାନ ଆଧାର ବା ବେସ୍ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
2^{1}\times \frac{1}{1}\times \frac{1}{q}
ଘାତାଙ୍କଗୁଡିକ 8 ଏବଂ -9 ଯୋଡନ୍ତୁ.
2\times \frac{1}{1}\times \frac{1}{q}
2 କୁ ଘାତ 1 କୁ ବୃଦ୍ଧି କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}q}(\frac{2}{1}q^{8-9})
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}q}(2\times \frac{1}{q})
ପାଟୀଗଣିତ କରନ୍ତୁ.
-2q^{-1-1}
ଏକ ପଲିନୋମିଆଲ୍ର ଡେରିଭେଟିଭ୍ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍ ହେଉଛି nax^{n-1}.
-2q^{-2}
ପାଟୀଗଣିତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}