ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ପ୍ରକୃତ ଅଂଶ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{2i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
ହର, 1+i ର ଜଟିଳ ମିଶ୍ରଣ ଦ୍ୱାରା ଉଭୟ ଲବ ଓ ହରକୁ ଗୁଣନ କରନ୍ତୁ.
\frac{2i\left(1+i\right)}{1^{2}-i^{2}}
ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\frac{2i\left(1+i\right)}{2}
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1. ହର ହିସାବ କରନ୍ତୁ.
\frac{2i\times 1+2i^{2}}{2}
2i କୁ 1+i ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2i\times 1+2\left(-1\right)}{2}
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1.
\frac{-2+2i}{2}
2i\times 1+2\left(-1\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ. ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
-1+i
-1+i ପ୍ରାପ୍ତ କରିବାକୁ -2+2i କୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
Re(\frac{2i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
\frac{2i}{1-i} ର ହରର ଜଟିଳ ମିଶ୍ରଣ ଦ୍ୱାରା ଉଭୟ ଲବ ଓ ହରକୁ ଗୁଣନ କରନ୍ତୁ, 1+i.
Re(\frac{2i\left(1+i\right)}{1^{2}-i^{2}})
ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
Re(\frac{2i\left(1+i\right)}{2})
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1. ହର ହିସାବ କରନ୍ତୁ.
Re(\frac{2i\times 1+2i^{2}}{2})
2i କୁ 1+i ଥର ଗୁଣନ କରନ୍ତୁ.
Re(\frac{2i\times 1+2\left(-1\right)}{2})
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1.
Re(\frac{-2+2i}{2})
2i\times 1+2\left(-1\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ. ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
Re(-1+i)
-1+i ପ୍ରାପ୍ତ କରିବାକୁ -2+2i କୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
-1
-1+i ର ବାସ୍ତବ ଅଂଶ ହେଉଛି -1.