ମୂଲ୍ୟାୟନ କରିବା
2\sqrt{2}\approx 2.828427125
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{2\times 3\sqrt{6}+8\sqrt{6}}{6\sqrt{12}-5\sqrt{3}}
ଗୁଣନିୟକ 54=3^{2}\times 6. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{3^{2}}\sqrt{6} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{3^{2}\times 6} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 3^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\frac{6\sqrt{6}+8\sqrt{6}}{6\sqrt{12}-5\sqrt{3}}
6 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{14\sqrt{6}}{6\sqrt{12}-5\sqrt{3}}
14\sqrt{6} ପାଇବାକୁ 6\sqrt{6} ଏବଂ 8\sqrt{6} ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{14\sqrt{6}}{6\times 2\sqrt{3}-5\sqrt{3}}
ଗୁଣନିୟକ 12=2^{2}\times 3. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{2^{2}}\sqrt{3} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2^{2}\times 3} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 2^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\frac{14\sqrt{6}}{12\sqrt{3}-5\sqrt{3}}
12 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{14\sqrt{6}}{7\sqrt{3}}
7\sqrt{3} ପାଇବାକୁ 12\sqrt{3} ଏବଂ -5\sqrt{3} ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{2\sqrt{6}}{\sqrt{3}}
ଉଭୟ ଲବ ଓ ହରରେ 7 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{2\sqrt{6}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
ଲବ ଓ ହରକୁ \sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରି \frac{2\sqrt{6}}{\sqrt{3}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{2\sqrt{6}\sqrt{3}}{3}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
\frac{2\sqrt{3}\sqrt{2}\sqrt{3}}{3}
ଗୁଣନିୟକ 6=3\times 2. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{3}\sqrt{2} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{3\times 2} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ.
\frac{2\times 3\sqrt{2}}{3}
3 ପ୍ରାପ୍ତ କରିବାକୁ \sqrt{3} ଏବଂ \sqrt{3} ଗୁଣନ କରନ୍ତୁ.
2\sqrt{2}
3 ଏବଂ 3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}