ମୂଲ୍ୟାୟନ କରିବା
\frac{7-2\sqrt{6}}{5}\approx 0.420204103
ଗୁଣକ
\frac{7 - 2 \sqrt{6}}{5} = 0.4202041028867288
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}
ଲବ ଓ ହରକୁ 2\sqrt{3}-\sqrt{2} ଦ୍ୱାରା ଗୁଣନ କରି \frac{2\sqrt{3}-\sqrt{2}}{2\sqrt{3}+\sqrt{2}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{3}-\sqrt{2}\right)^{2} ପ୍ରାପ୍ତ କରିବାକୁ 2\sqrt{3}-\sqrt{2} ଏବଂ 2\sqrt{3}-\sqrt{2} ଗୁଣନ କରନ୍ତୁ.
\frac{4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{3}-\sqrt{2}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
\frac{4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
\frac{12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
12 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
ଏକାଧିକ \sqrt{3} ଏବଂ \sqrt{2}କୁ, ସ୍କେୟାର୍ ରୁଟ୍ରେ ଏକାଧିକ ସଂଖ୍ୟା.
\frac{12-4\sqrt{6}+2}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
\frac{14-4\sqrt{6}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
14 ପ୍ରାପ୍ତ କରିବାକୁ 12 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
\frac{14-4\sqrt{6}}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
ବିସ୍ତାର କରନ୍ତୁ \left(2\sqrt{3}\right)^{2}.
\frac{14-4\sqrt{6}}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
2 ର 2 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{14-4\sqrt{6}}{4\times 3-\left(\sqrt{2}\right)^{2}}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
\frac{14-4\sqrt{6}}{12-\left(\sqrt{2}\right)^{2}}
12 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{14-4\sqrt{6}}{12-2}
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
\frac{14-4\sqrt{6}}{10}
10 ପ୍ରାପ୍ତ କରିବାକୁ 12 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}