ମୂଲ୍ୟାୟନ କରିବା
\frac{14\sqrt{3}-6\sqrt{2}}{43}\approx 0.366591394
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
ଲବ ଓ ହରକୁ 7-\sqrt{6} ଦ୍ୱାରା ଗୁଣନ କରି \frac{2\sqrt{3}}{7+\sqrt{6}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{49-6}
ବର୍ଗ 7. ବର୍ଗ \sqrt{6}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{43}
43 ପ୍ରାପ୍ତ କରିବାକୁ 49 ଏବଂ 6 ବିୟୋଗ କରନ୍ତୁ.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{6}}{43}
2\sqrt{3} କୁ 7-\sqrt{6} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{3}\sqrt{2}}{43}
ଗୁଣନିୟକ 6=3\times 2. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{3}\sqrt{2} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{3\times 2} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ.
\frac{14\sqrt{3}-2\times 3\sqrt{2}}{43}
3 ପ୍ରାପ୍ତ କରିବାକୁ \sqrt{3} ଏବଂ \sqrt{3} ଗୁଣନ କରନ୍ତୁ.
\frac{14\sqrt{3}-6\sqrt{2}}{43}
-6 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}