ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{\left(3\sqrt{2}+2\sqrt{7}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}
ଲବ ଓ ହରକୁ 3\sqrt{2}-2\sqrt{7} ଦ୍ୱାରା ଗୁଣନ କରି \frac{2+\sqrt{3}}{3\sqrt{2}+2\sqrt{7}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
\left(3\sqrt{2}+2\sqrt{7}\right)\left(3\sqrt{2}-2\sqrt{7}\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
ବିସ୍ତାର କରନ୍ତୁ \left(3\sqrt{2}\right)^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
2 ର 3 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 9 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{9\times 2-\left(2\sqrt{7}\right)^{2}}
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-\left(2\sqrt{7}\right)^{2}}
18 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-2^{2}\left(\sqrt{7}\right)^{2}}
ବିସ୍ତାର କରନ୍ତୁ \left(2\sqrt{7}\right)^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-4\left(\sqrt{7}\right)^{2}}
2 ର 2 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-4\times 7}
\sqrt{7} ର ଚତୁର୍ଭୁଜ ହେଉଛି 7.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-28}
28 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 7 ଗୁଣନ କରନ୍ତୁ.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{-10}
-10 ପ୍ରାପ୍ତ କରିବାକୁ 18 ଏବଂ 28 ବିୟୋଗ କରନ୍ତୁ.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{7}}{-10}
2+\sqrt{3} ର ପ୍ରତିଟି ପଦକୁ 3\sqrt{2}-2\sqrt{7} ର ପ୍ରତିଟି ପଦ ଦ୍ୱାରା ଗୁଣନ କରି ବିତରଣ ସଂକ୍ରାଣ ଗୁଣଧର୍ମ ପ୍ରୟୋଗ କରନ୍ତୁ.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{6}-2\sqrt{3}\sqrt{7}}{-10}
ଏକାଧିକ \sqrt{3} ଏବଂ \sqrt{2}କୁ, ସ୍କେୟାର୍ ରୁଟ୍‌ରେ ଏକାଧିକ ସଂଖ୍ୟା.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{6}-2\sqrt{21}}{-10}
ଏକାଧିକ \sqrt{3} ଏବଂ \sqrt{7}କୁ, ସ୍କେୟାର୍ ରୁଟ୍‌ରେ ଏକାଧିକ ସଂଖ୍ୟା.
\frac{-6\sqrt{2}+4\sqrt{7}-3\sqrt{6}+2\sqrt{21}}{10}
ଉଭୟ ଲବ ଏବଂ ହରକୁ -1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.