x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=15
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\frac{x}{x}-\frac{3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 1 କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{x-3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
ଯେହେତୁ \frac{x}{x} ଏବଂ \frac{3}{x} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\frac{x-3}{x}}{\frac{x}{x}+\frac{3}{x}}=\frac{2}{3}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 1 କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{x-3}{x}}{\frac{x+3}{x}}=\frac{2}{3}
ଯେହେତୁ \frac{x}{x} ଏବଂ \frac{3}{x} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\left(x-3\right)x}{x\left(x+3\right)}=\frac{2}{3}
ଭାରିଏବୁଲ୍ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. \frac{x+3}{x} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{x-3}{x} କୁ ଗୁଣନ କରି \frac{x-3}{x} କୁ \frac{x+3}{x} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{x^{2}-3x}{x\left(x+3\right)}=\frac{2}{3}
x-3 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{x^{2}-3x}{x^{2}+3x}=\frac{2}{3}
x କୁ x+3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3\left(x^{2}-3x\right)=2x\left(x+3\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -3,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 3x\left(x+3\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x^{2}+3x,3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
3x^{2}-9x=2x\left(x+3\right)
3 କୁ x^{2}-3x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x^{2}-9x=2x^{2}+6x
2x କୁ x+3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x^{2}-9x-2x^{2}=6x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
x^{2}-9x=6x
x^{2} ପାଇବାକୁ 3x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-9x-6x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6x ବିୟୋଗ କରନ୍ତୁ.
x^{2}-15x=0
-15x ପାଇବାକୁ -9x ଏବଂ -6x ସମ୍ମେଳନ କରନ୍ତୁ.
x\left(x-15\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=15
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ x-15=0 ସମାଧାନ କରନ୍ତୁ.
x=15
ଭାରିଏବୁଲ୍ x 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
\frac{\frac{x}{x}-\frac{3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 1 କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{x-3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
ଯେହେତୁ \frac{x}{x} ଏବଂ \frac{3}{x} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\frac{x-3}{x}}{\frac{x}{x}+\frac{3}{x}}=\frac{2}{3}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 1 କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{x-3}{x}}{\frac{x+3}{x}}=\frac{2}{3}
ଯେହେତୁ \frac{x}{x} ଏବଂ \frac{3}{x} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\left(x-3\right)x}{x\left(x+3\right)}=\frac{2}{3}
ଭାରିଏବୁଲ୍ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. \frac{x+3}{x} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{x-3}{x} କୁ ଗୁଣନ କରି \frac{x-3}{x} କୁ \frac{x+3}{x} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{x^{2}-3x}{x\left(x+3\right)}=\frac{2}{3}
x-3 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{x^{2}-3x}{x^{2}+3x}=\frac{2}{3}
x କୁ x+3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{x^{2}-3x}{x^{2}+3x}-\frac{2}{3}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{2}{3} ବିୟୋଗ କରନ୍ତୁ.
\frac{x^{2}-3x}{x\left(x+3\right)}-\frac{2}{3}=0
ଗୁଣନିୟକ x^{2}+3x.
\frac{3\left(x^{2}-3x\right)}{3x\left(x+3\right)}-\frac{2x\left(x+3\right)}{3x\left(x+3\right)}=0
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x+3\right) ଏବଂ 3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 3x\left(x+3\right). \frac{x^{2}-3x}{x\left(x+3\right)} କୁ \frac{3}{3} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{2}{3} କୁ \frac{x\left(x+3\right)}{x\left(x+3\right)} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{3\left(x^{2}-3x\right)-2x\left(x+3\right)}{3x\left(x+3\right)}=0
ଯେହେତୁ \frac{3\left(x^{2}-3x\right)}{3x\left(x+3\right)} ଏବଂ \frac{2x\left(x+3\right)}{3x\left(x+3\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{3x^{2}-9x-2x^{2}-6x}{3x\left(x+3\right)}=0
3\left(x^{2}-3x\right)-2x\left(x+3\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{x^{2}-15x}{3x\left(x+3\right)}=0
3x^{2}-9x-2x^{2}-6xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-15x=0
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -3,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 3x\left(x+3\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -15, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-15\right)±15}{2}
\left(-15\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{15±15}{2}
-15 ର ବିପରୀତ ହେଉଛି 15.
x=\frac{30}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{15±15}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 15 କୁ 15 ସହ ଯୋଡନ୍ତୁ.
x=15
30 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{0}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{15±15}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 15 ରୁ 15 ବିୟୋଗ କରନ୍ତୁ.
x=0
0 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=15 x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x=15
ଭାରିଏବୁଲ୍ x 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
\frac{\frac{x}{x}-\frac{3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 1 କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{x-3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
ଯେହେତୁ \frac{x}{x} ଏବଂ \frac{3}{x} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\frac{x-3}{x}}{\frac{x}{x}+\frac{3}{x}}=\frac{2}{3}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 1 କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{x-3}{x}}{\frac{x+3}{x}}=\frac{2}{3}
ଯେହେତୁ \frac{x}{x} ଏବଂ \frac{3}{x} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\left(x-3\right)x}{x\left(x+3\right)}=\frac{2}{3}
ଭାରିଏବୁଲ୍ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. \frac{x+3}{x} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{x-3}{x} କୁ ଗୁଣନ କରି \frac{x-3}{x} କୁ \frac{x+3}{x} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{x^{2}-3x}{x\left(x+3\right)}=\frac{2}{3}
x-3 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{x^{2}-3x}{x^{2}+3x}=\frac{2}{3}
x କୁ x+3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3\left(x^{2}-3x\right)=2x\left(x+3\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -3,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 3x\left(x+3\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x^{2}+3x,3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
3x^{2}-9x=2x\left(x+3\right)
3 କୁ x^{2}-3x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x^{2}-9x=2x^{2}+6x
2x କୁ x+3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x^{2}-9x-2x^{2}=6x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
x^{2}-9x=6x
x^{2} ପାଇବାକୁ 3x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-9x-6x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6x ବିୟୋଗ କରନ୍ତୁ.
x^{2}-15x=0
-15x ପାଇବାକୁ -9x ଏବଂ -6x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=\left(-\frac{15}{2}\right)^{2}
-\frac{15}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -15 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{15}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-15x+\frac{225}{4}=\frac{225}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{15}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x-\frac{15}{2}\right)^{2}=\frac{225}{4}
ଗୁଣନୀୟକ x^{2}-15x+\frac{225}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{15}{2}=\frac{15}{2} x-\frac{15}{2}=-\frac{15}{2}
ସରଳୀକୃତ କରିବା.
x=15 x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{15}{2} ଯୋଡନ୍ତୁ.
x=15
ଭାରିଏବୁଲ୍ x 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}