x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{3 \sqrt{5} + 7}{2} \approx 6.854101966
x=\frac{7-3\sqrt{5}}{2}\approx 0.145898034
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x-2+x+3=7x-\left(x-2\right)x
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -1,2 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-2\right)\left(x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x+1,\left(x-2\right)\left(x+1\right) ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
2x-2+3=7x-\left(x-2\right)x
2x ପାଇବାକୁ x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
2x+1=7x-\left(x-2\right)x
1 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
2x+1=7x-\left(x^{2}-2x\right)
x-2 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x+1=7x-x^{2}+2x
x^{2}-2x ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
2x+1=9x-x^{2}
9x ପାଇବାକୁ 7x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
2x+1-9x=-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9x ବିୟୋଗ କରନ୍ତୁ.
-7x+1=-x^{2}
-7x ପାଇବାକୁ 2x ଏବଂ -9x ସମ୍ମେଳନ କରନ୍ତୁ.
-7x+1+x^{2}=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ x^{2} ଯୋଡନ୍ତୁ.
x^{2}-7x+1=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -7, ଏବଂ c ପାଇଁ 1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{49-4}}{2}
ବର୍ଗ -7.
x=\frac{-\left(-7\right)±\sqrt{45}}{2}
49 କୁ -4 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-7\right)±3\sqrt{5}}{2}
45 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{7±3\sqrt{5}}{2}
-7 ର ବିପରୀତ ହେଉଛି 7.
x=\frac{3\sqrt{5}+7}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{7±3\sqrt{5}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 7 କୁ 3\sqrt{5} ସହ ଯୋଡନ୍ତୁ.
x=\frac{7-3\sqrt{5}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{7±3\sqrt{5}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 7 ରୁ 3\sqrt{5} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{3\sqrt{5}+7}{2} x=\frac{7-3\sqrt{5}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x-2+x+3=7x-\left(x-2\right)x
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -1,2 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-2\right)\left(x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x+1,\left(x-2\right)\left(x+1\right) ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
2x-2+3=7x-\left(x-2\right)x
2x ପାଇବାକୁ x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
2x+1=7x-\left(x-2\right)x
1 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
2x+1=7x-\left(x^{2}-2x\right)
x-2 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x+1=7x-x^{2}+2x
x^{2}-2x ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
2x+1=9x-x^{2}
9x ପାଇବାକୁ 7x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
2x+1-9x=-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9x ବିୟୋଗ କରନ୍ତୁ.
-7x+1=-x^{2}
-7x ପାଇବାକୁ 2x ଏବଂ -9x ସମ୍ମେଳନ କରନ୍ତୁ.
-7x+1+x^{2}=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ x^{2} ଯୋଡନ୍ତୁ.
-7x+x^{2}=-1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
x^{2}-7x=-1
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-1+\left(-\frac{7}{2}\right)^{2}
-\frac{7}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -7 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{7}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-7x+\frac{49}{4}=-1+\frac{49}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{7}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-7x+\frac{49}{4}=\frac{45}{4}
-1 କୁ \frac{49}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{7}{2}\right)^{2}=\frac{45}{4}
ଗୁଣନୀୟକ x^{2}-7x+\frac{49}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{7}{2}=\frac{3\sqrt{5}}{2} x-\frac{7}{2}=-\frac{3\sqrt{5}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{3\sqrt{5}+7}{2} x=\frac{7-3\sqrt{5}}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{2} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}