x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-\frac{5}{9}\approx -0.555555556
x=0
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x+1+\left(3x+1\right)\times 2=3\left(x+1\right)\left(3x+1\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -1,-\frac{1}{3} ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x+1\right)\left(3x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3x+1,x+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x+1+6x+2=3\left(x+1\right)\left(3x+1\right)
3x+1 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
7x+1+2=3\left(x+1\right)\left(3x+1\right)
7x ପାଇବାକୁ x ଏବଂ 6x ସମ୍ମେଳନ କରନ୍ତୁ.
7x+3=3\left(x+1\right)\left(3x+1\right)
3 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
7x+3=\left(3x+3\right)\left(3x+1\right)
3 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
7x+3=9x^{2}+12x+3
3x+3 କୁ 3x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
7x+3-9x^{2}=12x+3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9x^{2} ବିୟୋଗ କରନ୍ତୁ.
7x+3-9x^{2}-12x=3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12x ବିୟୋଗ କରନ୍ତୁ.
-5x+3-9x^{2}=3
-5x ପାଇବାକୁ 7x ଏବଂ -12x ସମ୍ମେଳନ କରନ୍ତୁ.
-5x+3-9x^{2}-3=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
-5x-9x^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
-9x^{2}-5x=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\left(-9\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -9, b ପାଇଁ -5, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±5}{2\left(-9\right)}
\left(-5\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{5±5}{2\left(-9\right)}
-5 ର ବିପରୀତ ହେଉଛି 5.
x=\frac{5±5}{-18}
2 କୁ -9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{10}{-18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±5}{-18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 5 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{5}{9}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{10}{-18} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{0}{-18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±5}{-18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 5 ରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x=0
0 କୁ -18 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{5}{9} x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x+1+\left(3x+1\right)\times 2=3\left(x+1\right)\left(3x+1\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -1,-\frac{1}{3} ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x+1\right)\left(3x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3x+1,x+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x+1+6x+2=3\left(x+1\right)\left(3x+1\right)
3x+1 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
7x+1+2=3\left(x+1\right)\left(3x+1\right)
7x ପାଇବାକୁ x ଏବଂ 6x ସମ୍ମେଳନ କରନ୍ତୁ.
7x+3=3\left(x+1\right)\left(3x+1\right)
3 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
7x+3=\left(3x+3\right)\left(3x+1\right)
3 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
7x+3=9x^{2}+12x+3
3x+3 କୁ 3x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
7x+3-9x^{2}=12x+3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9x^{2} ବିୟୋଗ କରନ୍ତୁ.
7x+3-9x^{2}-12x=3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12x ବିୟୋଗ କରନ୍ତୁ.
-5x+3-9x^{2}=3
-5x ପାଇବାକୁ 7x ଏବଂ -12x ସମ୍ମେଳନ କରନ୍ତୁ.
-5x-9x^{2}=3-3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
-5x-9x^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
-9x^{2}-5x=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-9x^{2}-5x}{-9}=\frac{0}{-9}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{5}{-9}\right)x=\frac{0}{-9}
-9 ଦ୍ୱାରା ବିଭାଜନ କରିବା -9 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{5}{9}x=\frac{0}{-9}
-5 କୁ -9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{5}{9}x=0
0 କୁ -9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{5}{9}x+\left(\frac{5}{18}\right)^{2}=\left(\frac{5}{18}\right)^{2}
\frac{5}{18} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{5}{9} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{18} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{25}{324}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{5}{18} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x+\frac{5}{18}\right)^{2}=\frac{25}{324}
ଗୁଣନୀୟକ x^{2}+\frac{5}{9}x+\frac{25}{324}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{5}{18}\right)^{2}}=\sqrt{\frac{25}{324}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{5}{18}=\frac{5}{18} x+\frac{5}{18}=-\frac{5}{18}
ସରଳୀକୃତ କରିବା.
x=0 x=-\frac{5}{9}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{5}{18} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}