ମୂଲ୍ୟାୟନ କରିବା
-\frac{1}{5}=-0.2
ଗୁଣକ
-\frac{1}{5} = -0.2
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{3}{6}-\frac{4}{6}+\frac{4}{5}-\frac{1}{2}-\frac{1}{3}
2 ଏବଂ 3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 6. \frac{1}{2} ଏବଂ \frac{2}{3} କୁ 6 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{3-4}{6}+\frac{4}{5}-\frac{1}{2}-\frac{1}{3}
ଯେହେତୁ \frac{3}{6} ଏବଂ \frac{4}{6} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
-\frac{1}{6}+\frac{4}{5}-\frac{1}{2}-\frac{1}{3}
-1 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
-\frac{5}{30}+\frac{24}{30}-\frac{1}{2}-\frac{1}{3}
6 ଏବଂ 5 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 30. -\frac{1}{6} ଏବଂ \frac{4}{5} କୁ 30 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{-5+24}{30}-\frac{1}{2}-\frac{1}{3}
ଯେହେତୁ -\frac{5}{30} ଏବଂ \frac{24}{30} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{19}{30}-\frac{1}{2}-\frac{1}{3}
19 ପ୍ରାପ୍ତ କରିବାକୁ -5 ଏବଂ 24 ଯୋଗ କରନ୍ତୁ.
\frac{19}{30}-\frac{15}{30}-\frac{1}{3}
30 ଏବଂ 2 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 30. \frac{19}{30} ଏବଂ \frac{1}{2} କୁ 30 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{19-15}{30}-\frac{1}{3}
ଯେହେତୁ \frac{19}{30} ଏବଂ \frac{15}{30} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{4}{30}-\frac{1}{3}
4 ପ୍ରାପ୍ତ କରିବାକୁ 19 ଏବଂ 15 ବିୟୋଗ କରନ୍ତୁ.
\frac{2}{15}-\frac{1}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{4}{30} ହ୍ରାସ କରନ୍ତୁ.
\frac{2}{15}-\frac{5}{15}
15 ଏବଂ 3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 15. \frac{2}{15} ଏବଂ \frac{1}{3} କୁ 15 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{2-5}{15}
ଯେହେତୁ \frac{2}{15} ଏବଂ \frac{5}{15} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{-3}{15}
-3 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 5 ବିୟୋଗ କରନ୍ତୁ.
-\frac{1}{5}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-3}{15} ହ୍ରାସ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}