ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-4=\left(x-3\right)\left(2x+1\right)
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -2,2,3 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-3\right)\left(x-2\right)\left(x+2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-3,x^{2}-4 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x^{2}-4=2x^{2}-5x-3
x-3 କୁ 2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-4-2x^{2}=-5x-3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
-x^{2}-4=-5x-3
-x^{2} ପାଇବାକୁ x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-x^{2}-4+5x=-3
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5x ଯୋଡନ୍ତୁ.
-x^{2}-4+5x+3=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3 ଯୋଡନ୍ତୁ.
-x^{2}-1+5x=0
-1 ପ୍ରାପ୍ତ କରିବାକୁ -4 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
-x^{2}+5x-1=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 5, ଏବଂ c ପାଇଁ -1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
ବର୍ଗ 5.
x=\frac{-5±\sqrt{25+4\left(-1\right)}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-5±\sqrt{25-4}}{2\left(-1\right)}
4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-5±\sqrt{21}}{2\left(-1\right)}
25 କୁ -4 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-5±\sqrt{21}}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{21}-5}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-5±\sqrt{21}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -5 କୁ \sqrt{21} ସହ ଯୋଡନ୍ତୁ.
x=\frac{5-\sqrt{21}}{2}
-5+\sqrt{21} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{21}-5}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-5±\sqrt{21}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -5 ରୁ \sqrt{21} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{21}+5}{2}
-5-\sqrt{21} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5-\sqrt{21}}{2} x=\frac{\sqrt{21}+5}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-4=\left(x-3\right)\left(2x+1\right)
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -2,2,3 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-3\right)\left(x-2\right)\left(x+2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-3,x^{2}-4 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x^{2}-4=2x^{2}-5x-3
x-3 କୁ 2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-4-2x^{2}=-5x-3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
-x^{2}-4=-5x-3
-x^{2} ପାଇବାକୁ x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-x^{2}-4+5x=-3
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5x ଯୋଡନ୍ତୁ.
-x^{2}+5x=-3+4
ଉଭୟ ପାର୍ଶ୍ଵକୁ 4 ଯୋଡନ୍ତୁ.
-x^{2}+5x=1
1 ପ୍ରାପ୍ତ କରିବାକୁ -3 ଏବଂ 4 ଯୋଗ କରନ୍ତୁ.
\frac{-x^{2}+5x}{-1}=\frac{1}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{5}{-1}x=\frac{1}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-5x=\frac{1}{-1}
5 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-5x=-1
1 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-1+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -5 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-5x+\frac{25}{4}=-1+\frac{25}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-5x+\frac{25}{4}=\frac{21}{4}
-1 କୁ \frac{25}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{5}{2}\right)^{2}=\frac{21}{4}
ଗୁଣନୀୟକ x^{2}-5x+\frac{25}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{5}{2}=\frac{\sqrt{21}}{2} x-\frac{5}{2}=-\frac{\sqrt{21}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{21}+5}{2} x=\frac{5-\sqrt{21}}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{2} ଯୋଡନ୍ତୁ.