x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{1}{2}=0.5
x=0
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2\left(2x-1\right)\left(2x+1\right)=3x-2+2x^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3,6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
\left(4x-2\right)\left(2x+1\right)=3x-2+2x^{2}
2 କୁ 2x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
8x^{2}-2=3x-2+2x^{2}
4x-2 କୁ 2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
8x^{2}-2-3x=-2+2x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x ବିୟୋଗ କରନ୍ତୁ.
8x^{2}-2-3x-\left(-2\right)=2x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ -2 ବିୟୋଗ କରନ୍ତୁ.
8x^{2}-2-3x+2=2x^{2}
-2 ର ବିପରୀତ ହେଉଛି 2.
8x^{2}-2-3x+2-2x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
8x^{2}-3x-2x^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
6x^{2}-3x=0
6x^{2} ପାଇବାକୁ 8x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x\left(6x-3\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=\frac{1}{2}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ 6x-3=0 ସମାଧାନ କରନ୍ତୁ.
2\left(2x-1\right)\left(2x+1\right)=3x-2+2x^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3,6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
\left(4x-2\right)\left(2x+1\right)=3x-2+2x^{2}
2 କୁ 2x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
8x^{2}-2=3x-2+2x^{2}
4x-2 କୁ 2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
8x^{2}-2-3x=-2+2x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x ବିୟୋଗ କରନ୍ତୁ.
8x^{2}-2-3x-\left(-2\right)=2x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ -2 ବିୟୋଗ କରନ୍ତୁ.
8x^{2}-2-3x+2=2x^{2}
-2 ର ବିପରୀତ ହେଉଛି 2.
8x^{2}-2-3x+2-2x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
8x^{2}-3x-2x^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
6x^{2}-3x=0
6x^{2} ପାଇବାକୁ 8x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 6}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 6, b ପାଇଁ -3, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-3\right)±3}{2\times 6}
\left(-3\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{3±3}{2\times 6}
-3 ର ବିପରୀତ ହେଉଛି 3.
x=\frac{3±3}{12}
2 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{6}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{3±3}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 3 କୁ 3 ସହ ଯୋଡନ୍ତୁ.
x=\frac{1}{2}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{6}{12} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{0}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{3±3}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 3 ରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
x=0
0 କୁ 12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{1}{2} x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2\left(2x-1\right)\left(2x+1\right)=3x-2+2x^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3,6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
\left(4x-2\right)\left(2x+1\right)=3x-2+2x^{2}
2 କୁ 2x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
8x^{2}-2=3x-2+2x^{2}
4x-2 କୁ 2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
8x^{2}-2-3x=-2+2x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x ବିୟୋଗ କରନ୍ତୁ.
8x^{2}-2-3x-2x^{2}=-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
6x^{2}-2-3x=-2
6x^{2} ପାଇବାକୁ 8x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
6x^{2}-3x=-2+2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2 ଯୋଡନ୍ତୁ.
6x^{2}-3x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
\frac{6x^{2}-3x}{6}=\frac{0}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{3}{6}\right)x=\frac{0}{6}
6 ଦ୍ୱାରା ବିଭାଜନ କରିବା 6 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{1}{2}x=\frac{0}{6}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-3}{6} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{1}{2}x=0
0 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{1}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
ଗୁଣନୀୟକ x^{2}-\frac{1}{2}x+\frac{1}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{1}{2} x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{4} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}