ମୂଲ୍ୟାୟନ କରିବା
\frac{x}{6x+25}
w.r.t. x ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
\frac{25}{\left(6x+25\right)^{2}}
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\frac{x}{x+5}}{\frac{x}{x+5}+\frac{5\left(x+5\right)}{x+5}}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 5 କୁ \frac{x+5}{x+5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{x}{x+5}}{\frac{x+5\left(x+5\right)}{x+5}}
ଯେହେତୁ \frac{x}{x+5} ଏବଂ \frac{5\left(x+5\right)}{x+5} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\frac{x}{x+5}}{\frac{x+5x+25}{x+5}}
x+5\left(x+5\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\frac{x}{x+5}}{\frac{6x+25}{x+5}}
x+5x+25ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{x\left(x+5\right)}{\left(x+5\right)\left(6x+25\right)}
\frac{6x+25}{x+5} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{x}{x+5} କୁ ଗୁଣନ କରି \frac{x}{x+5} କୁ \frac{6x+25}{x+5} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{x}{6x+25}
ଉଭୟ ଲବ ଓ ହରରେ x+5 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x}{x+5}+\frac{5\left(x+5\right)}{x+5}})
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 5 କୁ \frac{x+5}{x+5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x+5\left(x+5\right)}{x+5}})
ଯେହେତୁ \frac{x}{x+5} ଏବଂ \frac{5\left(x+5\right)}{x+5} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x+5x+25}{x+5}})
x+5\left(x+5\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{6x+25}{x+5}})
x+5x+25ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+5\right)}{\left(x+5\right)\left(6x+25\right)})
\frac{6x+25}{x+5} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{x}{x+5} କୁ ଗୁଣନ କରି \frac{x}{x+5} କୁ \frac{6x+25}{x+5} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{6x+25})
ଉଭୟ ଲବ ଓ ହରରେ x+5 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\left(6x^{1}+25\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}+25)}{\left(6x^{1}+25\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍ଯୋଗ୍ୟ ଫଙ୍କସନ୍ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\left(6x^{1}+25\right)x^{1-1}-x^{1}\times 6x^{1-1}}{\left(6x^{1}+25\right)^{2}}
ଏକ ପଲିନୋମିଆଲ୍ର ଡେରିଭେଟିଭ୍ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍ ହେଉଛି nax^{n-1}.
\frac{\left(6x^{1}+25\right)x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+25\right)^{2}}
ପାଟୀଗଣିତ କରନ୍ତୁ.
\frac{6x^{1}x^{0}+25x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+25\right)^{2}}
ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରିବା ବିସ୍ତାର କରନ୍ତୁ.
\frac{6x^{1}+25x^{0}-6x^{1}}{\left(6x^{1}+25\right)^{2}}
ସମାନ ଆଧାର ବା ବେସ୍ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
\frac{\left(6-6\right)x^{1}+25x^{0}}{\left(6x^{1}+25\right)^{2}}
ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{25x^{0}}{\left(6x^{1}+25\right)^{2}}
6 ରୁ 6 ବିୟୋଗ କରନ୍ତୁ.
\frac{25x^{0}}{\left(6x+25\right)^{2}}
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\frac{25\times 1}{\left(6x+25\right)^{2}}
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.
\frac{25}{\left(6x+25\right)^{2}}
ଯେ କୌଣସି ପଦ t, t\times 1=t ଏବଂ 1t=t ପାଇଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}