ମୂଲ୍ୟାୟନ କରିବା
-\frac{24}{7}\approx -3.428571429
ଗୁଣକ
-\frac{24}{7} = -3\frac{3}{7} = -3.4285714285714284
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\frac{\frac{\frac{8}{3}}{2}}{\frac{\frac{1}{2}}{\frac{3}{2}}}\times 3}{4-\frac{15}{2}}
\frac{1}{3} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{\frac{\frac{\frac{8}{3}}{2}}{\frac{\frac{1}{2}}{\frac{3}{2}}}}{4-\frac{15}{2}} କୁ ଗୁଣନ କରି \frac{\frac{\frac{\frac{8}{3}}{2}}{\frac{\frac{1}{2}}{\frac{3}{2}}}}{4-\frac{15}{2}} କୁ \frac{1}{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\frac{\frac{8}{3}\times \frac{3}{2}}{2\times \frac{1}{2}}\times 3}{4-\frac{15}{2}}
\frac{\frac{1}{2}}{\frac{3}{2}} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{\frac{8}{3}}{2} କୁ ଗୁଣନ କରି \frac{\frac{8}{3}}{2} କୁ \frac{\frac{1}{2}}{\frac{3}{2}} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\frac{\frac{8\times 3}{3\times 2}}{2\times \frac{1}{2}}\times 3}{4-\frac{15}{2}}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{8}{3} କୁ \frac{3}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{\frac{8}{2}}{2\times \frac{1}{2}}\times 3}{4-\frac{15}{2}}
ଉଭୟ ଲବ ଓ ହରରେ 3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\frac{4}{2\times \frac{1}{2}}\times 3}{4-\frac{15}{2}}
4 ପ୍ରାପ୍ତ କରିବାକୁ 8 କୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\frac{\frac{4}{1}\times 3}{4-\frac{15}{2}}
2 ଏବଂ 2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{4\times 3}{4-\frac{15}{2}}
ଏକ ଦ୍ୱାରା ବିଭାଜିତ ହେଉଥିବା ଯେକୌଣସି ସଂଖ୍ୟାରୁ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{12}{4-\frac{15}{2}}
12 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{12}{\frac{8}{2}-\frac{15}{2}}
ଦଶମିକ 4 କୁ ଭଗ୍ନାଂଶ \frac{8}{2} କୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{12}{\frac{8-15}{2}}
ଯେହେତୁ \frac{8}{2} ଏବଂ \frac{15}{2} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{12}{-\frac{7}{2}}
-7 ପ୍ରାପ୍ତ କରିବାକୁ 8 ଏବଂ 15 ବିୟୋଗ କରନ୍ତୁ.
12\left(-\frac{2}{7}\right)
-\frac{7}{2} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା 12 କୁ ଗୁଣନ କରି 12 କୁ -\frac{7}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{12\left(-2\right)}{7}
12\left(-\frac{2}{7}\right) କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{-24}{7}
-24 ପ୍ରାପ୍ତ କରିବାକୁ 12 ଏବଂ -2 ଗୁଣନ କରନ୍ତୁ.
-\frac{24}{7}
ଋଣାତ୍ମକ ଚିହ୍ନକୁ କାଢିଦେବା ଦ୍ୱାରା ଭଗ୍ନାଂଶ \frac{-24}{7} କୁ -\frac{24}{7} ଭାବେ ପୁଣି ଲେଖାଯାଇପାରିବ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}