ମୂଲ୍ୟାୟନ କରିବା
\frac{1}{10}=0.1
ଗୁଣକ
\frac{1}{2 \cdot 5} = 0.1
କ୍ୱିଜ୍
Arithmetic
\frac { \frac { 1 } { 5 } - \frac { 3 } { 10 } + \frac { 1 } { 4 } \cdot 2 } { 4 }
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\frac{2}{10}-\frac{3}{10}+\frac{1}{4}\times 2}{4}
5 ଏବଂ 10 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 10. \frac{1}{5} ଏବଂ \frac{3}{10} କୁ 10 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{\frac{2-3}{10}+\frac{1}{4}\times 2}{4}
ଯେହେତୁ \frac{2}{10} ଏବଂ \frac{3}{10} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{-\frac{1}{10}+\frac{1}{4}\times 2}{4}
-1 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
\frac{-\frac{1}{10}+\frac{2}{4}}{4}
\frac{2}{4} ପ୍ରାପ୍ତ କରିବାକୁ \frac{1}{4} ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{-\frac{1}{10}+\frac{1}{2}}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{2}{4} ହ୍ରାସ କରନ୍ତୁ.
\frac{-\frac{1}{10}+\frac{5}{10}}{4}
10 ଏବଂ 2 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 10. -\frac{1}{10} ଏବଂ \frac{1}{2} କୁ 10 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{\frac{-1+5}{10}}{4}
ଯେହେତୁ -\frac{1}{10} ଏବଂ \frac{5}{10} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\frac{4}{10}}{4}
4 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
\frac{\frac{2}{5}}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{4}{10} ହ୍ରାସ କରନ୍ତୁ.
\frac{2}{5\times 4}
\frac{\frac{2}{5}}{4} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{2}{20}
20 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 4 ଗୁଣନ କରନ୍ତୁ.
\frac{1}{10}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{2}{20} ହ୍ରାସ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}