a_2 ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}a_{2}=-\frac{\alpha \cot(\alpha _{3})}{c}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(\alpha _{3}>\frac{\pi n_{2}}{2}\text{ and }\alpha _{3}<\frac{\pi n_{2}}{2}+\frac{\pi }{2}\right)\text{ and }c\neq 0\\a_{2}\in \mathrm{R}\text{, }&\left(c=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }\alpha _{3}=\pi n_{1}\right)\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(\alpha _{3}>\pi n_{3}+\frac{\pi }{2}\text{ and }\alpha _{3}<\pi n_{3}+\frac{3\pi }{2}\right)\text{ and }\alpha =0\end{matrix}\right.
c ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}c=-\frac{\alpha \cot(\alpha _{3})}{a_{2}}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(\alpha _{3}>\frac{\pi n_{2}}{2}\text{ and }\alpha _{3}<\frac{\pi n_{2}}{2}+\frac{\pi }{2}\right)\text{ and }a_{2}\neq 0\\c\in \mathrm{R}\text{, }&\left(a_{2}=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }\alpha _{3}=\pi n_{1}\right)\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(\alpha _{3}>\pi n_{3}+\frac{\pi }{2}\text{ and }\alpha _{3}<\pi n_{3}+\frac{3\pi }{2}\right)\text{ and }\alpha =0\end{matrix}\right.
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a_{2}c\tan(-\alpha _{3})=\alpha
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
c\tan(-\alpha _{3})a_{2}=\alpha
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{c\tan(-\alpha _{3})a_{2}}{c\tan(-\alpha _{3})}=\frac{\alpha }{c\tan(-\alpha _{3})}
ଉଭୟ ପାର୍ଶ୍ୱକୁ c\tan(-\alpha _{3}) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a_{2}=\frac{\alpha }{c\tan(-\alpha _{3})}
c\tan(-\alpha _{3}) ଦ୍ୱାରା ବିଭାଜନ କରିବା c\tan(-\alpha _{3}) ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
a_{2}=-\frac{\alpha \cot(\alpha _{3})}{c}
\alpha କୁ c\tan(-\alpha _{3}) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a_{2}c\tan(-\alpha _{3})=\alpha
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
a_{2}\tan(-\alpha _{3})c=\alpha
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{a_{2}\tan(-\alpha _{3})c}{a_{2}\tan(-\alpha _{3})}=\frac{\alpha }{a_{2}\tan(-\alpha _{3})}
ଉଭୟ ପାର୍ଶ୍ୱକୁ a_{2}\tan(-\alpha _{3}) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
c=\frac{\alpha }{a_{2}\tan(-\alpha _{3})}
a_{2}\tan(-\alpha _{3}) ଦ୍ୱାରା ବିଭାଜନ କରିବା a_{2}\tan(-\alpha _{3}) ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
c=-\frac{\alpha \cot(\alpha _{3})}{a_{2}}
\alpha କୁ a_{2}\tan(-\alpha _{3}) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}