ମୂଲ୍ୟାୟନ କରିବା
\frac{1}{25}=0.04
ଗୁଣକ
\frac{1}{5 ^ {2}} = 0.04
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(\frac{\frac{18}{5}}{1+\frac{1}{5}}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}\right)^{-2}
\frac{18}{5} ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ \frac{3}{5} ଯୋଗ କରନ୍ତୁ.
\left(\frac{\frac{18}{5}}{\frac{6}{5}}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}\right)^{-2}
\frac{6}{5} ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ \frac{1}{5} ଯୋଗ କରନ୍ତୁ.
\left(\frac{18}{5}\times \frac{5}{6}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}\right)^{-2}
\frac{6}{5} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{18}{5} କୁ ଗୁଣନ କରି \frac{18}{5} କୁ \frac{6}{5} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\left(3\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}\right)^{-2}
3 ପ୍ରାପ୍ତ କରିବାକୁ \frac{18}{5} ଏବଂ \frac{5}{6} ଗୁଣନ କରନ୍ତୁ.
\left(3\times \frac{7}{6}+\sqrt{2+\frac{1}{4}}\right)^{-2}
\frac{7}{6} ପ୍ରାପ୍ତ କରିବାକୁ \frac{3}{2} ଏବଂ \frac{1}{3} ବିୟୋଗ କରନ୍ତୁ.
\left(\frac{7}{2}+\sqrt{2+\frac{1}{4}}\right)^{-2}
\frac{7}{2} ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ \frac{7}{6} ଗୁଣନ କରନ୍ତୁ.
\left(\frac{7}{2}+\sqrt{\frac{9}{4}}\right)^{-2}
\frac{9}{4} ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ \frac{1}{4} ଯୋଗ କରନ୍ତୁ.
\left(\frac{7}{2}+\frac{3}{2}\right)^{-2}
ସ୍କେୟାର୍ ରୁଟ୍ \frac{\sqrt{9}}{\sqrt{4}} ର ଡିଭିଜନ୍ ଭାବରେ ଡିଭିଜନ୍ \frac{9}{4} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. ଉଭୟ ଲବ ଏବଂ ହରର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
5^{-2}
5 ପ୍ରାପ୍ତ କରିବାକୁ \frac{7}{2} ଏବଂ \frac{3}{2} ଯୋଗ କରନ୍ତୁ.
\frac{1}{25}
-2 ର 5 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ \frac{1}{25} ପ୍ରାପ୍ତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}