ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗୁଣକ
Tick mark Image

ଅଂଶୀଦାର

\frac{\frac{\frac{\frac{12+3}{4}}{\frac{3}{4}-1}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
12 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 4 ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3}{4}-1}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
15 ପ୍ରାପ୍ତ କରିବାକୁ 12 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3}{4}-\frac{4}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
ଦଶମିକ 1 କୁ ଭଗ୍ନାଂଶ \frac{4}{4} କୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3-4}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
ଯେହେତୁ \frac{3}{4} ଏବଂ \frac{4}{4} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\frac{\frac{\frac{15}{4}}{-\frac{1}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
-1 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{\frac{15}{4}\left(-4\right)+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
-\frac{1}{4} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା \frac{15}{4} କୁ ଗୁଣନ କରି \frac{15}{4} କୁ -\frac{1}{4} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\frac{\frac{15\left(-4\right)}{4}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
\frac{15}{4}\left(-4\right) କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{\frac{\frac{-60}{4}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
-60 ପ୍ରାପ୍ତ କରିବାକୁ 15 ଏବଂ -4 ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{-15+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
-15 ପ୍ରାପ୍ତ କରିବାକୁ -60 କୁ 4 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\frac{\frac{-15+\left(1-0\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 6 ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{-15+1\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
1 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 0 ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{-15+1\times \frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
2 ର -\frac{5}{2} ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ \frac{25}{4} ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{\frac{-15+\frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
\frac{25}{4} ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ \frac{25}{4} ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{-\frac{60}{4}+\frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
ଦଶମିକ -15 କୁ ଭଗ୍ନାଂଶ -\frac{60}{4} କୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{\frac{\frac{-60+25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
ଯେହେତୁ -\frac{60}{4} ଏବଂ \frac{25}{4} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\frac{-\frac{35}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
-35 ପ୍ରାପ୍ତ କରିବାକୁ -60 ଏବଂ 25 ଯୋଗ କରନ୍ତୁ.
\frac{-\frac{35}{4}\left(-\frac{3}{5}\right)-20}{\left(-1\right)^{39}}
-\frac{5}{3} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା -\frac{35}{4} କୁ ଗୁଣନ କରି -\frac{35}{4} କୁ -\frac{5}{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\frac{-35\left(-3\right)}{4\times 5}-20}{\left(-1\right)^{39}}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା -\frac{35}{4} କୁ -\frac{3}{5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{105}{20}-20}{\left(-1\right)^{39}}
ଭଗ୍ନାଂଶ \frac{-35\left(-3\right)}{4\times 5} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\frac{21}{4}-20}{\left(-1\right)^{39}}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{105}{20} ହ୍ରାସ କରନ୍ତୁ.
\frac{\frac{21}{4}-\frac{80}{4}}{\left(-1\right)^{39}}
ଦଶମିକ 20 କୁ ଭଗ୍ନାଂଶ \frac{80}{4} କୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{\frac{21-80}{4}}{\left(-1\right)^{39}}
ଯେହେତୁ \frac{21}{4} ଏବଂ \frac{80}{4} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{-\frac{59}{4}}{\left(-1\right)^{39}}
-59 ପ୍ରାପ୍ତ କରିବାକୁ 21 ଏବଂ 80 ବିୟୋଗ କରନ୍ତୁ.
\frac{-\frac{59}{4}}{-1}
39 ର -1 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ -1 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{-59}{4\left(-1\right)}
\frac{-\frac{59}{4}}{-1} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{-59}{-4}
-4 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ -1 ଗୁଣନ କରନ୍ତୁ.
\frac{59}{4}
ଉଭୟ ଲବ ଏବଂ ହରରୁ ଋଣାତ୍ମକ ଚିହ୍ନ ଅପସାରଣ କରିବା ଦ୍ୱାରା ଭଗ୍ନାଂଶ \frac{-59}{-4} କୁ \frac{59}{4} କୁ ସରଳୀକୃତ କରାଯାଇପାରିବ.