ମୂଲ୍ୟାୟନ କରିବା
\frac{1}{a^{5}}
ପ୍ରସାରଣ
\frac{1}{a^{5}}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\left(\frac{\frac{1}{b}a^{4}}{b^{2}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\left(\frac{a^{4}}{b^{3}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
ସମାନ ଆଧାରର ଘାତ ବା ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
\frac{a^{4}}{b^{3}} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b^{5}}{a^{3}}\right)^{3}}
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{b^{5}}{a^{5}}\right)^{3}}
ସମାନ ଆଧାରର ଘାତ ବା ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}}
\frac{b^{5}}{a^{5}} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{\left(a^{4}\right)^{-5}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} କୁ ଗୁଣନ କରି \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} କୁ \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{a^{-20}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. -20 ପାଇବାକୁ 4 ଏବଂ -5 ଗୁଣନ କରନ୍ତୁ.
\frac{a^{-20}a^{15}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 15 ପାଇବାକୁ 5 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{a^{-5}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ସମାନ ଆଧାରର ପାୱାର୍ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. -5 ପାଇବାକୁ -20 ଏବଂ 15 ଯୋଡନ୍ତୁ.
\frac{a^{-5}}{b^{-15}\left(b^{5}\right)^{3}}
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. -15 ପାଇବାକୁ 3 ଏବଂ -5 ଗୁଣନ କରନ୍ତୁ.
\frac{a^{-5}}{b^{-15}b^{15}}
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 15 ପାଇବାକୁ 5 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{a^{-5}}{1}
1 ପ୍ରାପ୍ତ କରିବାକୁ b^{-15} ଏବଂ b^{15} ଗୁଣନ କରନ୍ତୁ.
a^{-5}
ଏକ ଦ୍ୱାରା ବିଭାଜିତ ହେଉଥିବା ଯେକୌଣସି ସଂଖ୍ୟାରୁ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{\left(\frac{\frac{1}{b}a^{4}}{b^{2}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\left(\frac{a^{4}}{b^{3}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
ସମାନ ଆଧାରର ଘାତ ବା ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
\frac{a^{4}}{b^{3}} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b^{5}}{a^{3}}\right)^{3}}
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{b^{5}}{a^{5}}\right)^{3}}
ସମାନ ଆଧାରର ଘାତ ବା ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}}
\frac{b^{5}}{a^{5}} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{\left(a^{4}\right)^{-5}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} କୁ ଗୁଣନ କରି \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} କୁ \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{a^{-20}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. -20 ପାଇବାକୁ 4 ଏବଂ -5 ଗୁଣନ କରନ୍ତୁ.
\frac{a^{-20}a^{15}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 15 ପାଇବାକୁ 5 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{a^{-5}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ସମାନ ଆଧାରର ପାୱାର୍ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. -5 ପାଇବାକୁ -20 ଏବଂ 15 ଯୋଡନ୍ତୁ.
\frac{a^{-5}}{b^{-15}\left(b^{5}\right)^{3}}
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. -15 ପାଇବାକୁ 3 ଏବଂ -5 ଗୁଣନ କରନ୍ତୁ.
\frac{a^{-5}}{b^{-15}b^{15}}
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 15 ପାଇବାକୁ 5 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{a^{-5}}{1}
1 ପ୍ରାପ୍ତ କରିବାକୁ b^{-15} ଏବଂ b^{15} ଗୁଣନ କରନ୍ତୁ.
a^{-5}
ଏକ ଦ୍ୱାରା ବିଭାଜିତ ହେଉଥିବା ଯେକୌଣସି ସଂଖ୍ୟାରୁ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}