ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. x ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int x\left(1-2x^{2}+\left(x^{2}\right)^{2}\right)\mathrm{d}x
\left(1-x^{2}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
\int x\left(1-2x^{2}+x^{4}\right)\mathrm{d}x
ଏକ ସଂଖ୍ୟାର ପାୱାର୍‌ ଅନ୍ୟ ଏକ ପାୱାର୍‌କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 4 ପାଇବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\int x-2x^{3}+x^{5}\mathrm{d}x
x କୁ 1-2x^{2}+x^{4} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\int x\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int x^{5}\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
\int x\mathrm{d}x-2\int x^{3}\mathrm{d}x+\int x^{5}\mathrm{d}x
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{x^{2}}{2}-2\int x^{3}\mathrm{d}x+\int x^{5}\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x\mathrm{d}xକୁ \frac{x^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ।
\frac{x^{2}}{2}-\frac{x^{4}}{2}+\int x^{5}\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{3}\mathrm{d}xକୁ \frac{x^{4}}{4}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -2 କୁ \frac{x^{4}}{4} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}}{2}-\frac{x^{4}}{2}+\frac{x^{6}}{6}
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{5}\mathrm{d}xକୁ \frac{x^{6}}{6}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ।
\frac{x^{6}}{6}-\frac{x^{4}}{2}+\frac{x^{2}}{2}+С
ଯଦି F\left(x\right), f\left(x\right)ର ଏକ ଆଣ୍ଟିଡେରିଭେଟିଭ୍‌ ଅଟେ, ତେବେ f\left(x\right)ର ସମସ୍ତ ଆଣ୍ଟିଡେରିଭେଟିଭ୍‌ F\left(x\right)+C ଦ୍ୱାରା ଦିଆଯାଇଛି। ତେଣୁ ଫଳାଫଳରେ ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ସ୍ଥିରାଙ୍କ C\in \mathrm{R}କୁ ଯୋଗ କରନ୍ତୁ।