Overslaan en naar de inhoud gaan
$\exponential{x}{2} + 11 x + 24 $
Factoriseren
Tick mark Image
Evalueren
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

a+b=11 ab=1\times 24=24
Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als x^{2}+ax+bx+24. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
1,24 2,12 3,8 4,6
Omdat ab positief is, a en b hetzelfde teken. Omdat a+b positief is, zijn a en b positief. Alle paren met gehele getallen die een product 24 geven weergeven.
1+24=25 2+12=14 3+8=11 4+6=10
Bereken de som voor elk paar.
a=3 b=8
De oplossing is het paar dat de som 11 geeft.
\left(x^{2}+3x\right)+\left(8x+24\right)
Herschrijf x^{2}+11x+24 als \left(x^{2}+3x\right)+\left(8x+24\right).
x\left(x+3\right)+8\left(x+3\right)
Factoriseer x in de eerste en 8 in de tweede groep.
\left(x+3\right)\left(x+8\right)
Factoriseer de gemeenschappelijke term x+3 door gebruik te maken van distributieve eigenschap.
x^{2}+11x+24=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
x=\frac{-11±\sqrt{11^{2}-4\times 24}}{2}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-11±\sqrt{121-4\times 24}}{2}
Bereken de wortel van 11.
x=\frac{-11±\sqrt{121-96}}{2}
Vermenigvuldig -4 met 24.
x=\frac{-11±\sqrt{25}}{2}
Tel 121 op bij -96.
x=\frac{-11±5}{2}
Bereken de vierkantswortel van 25.
x=\frac{-6}{2}
Los nu de vergelijking x=\frac{-11±5}{2} op als ± positief is. Tel -11 op bij 5.
x=-3
Deel -6 door 2.
x=\frac{-16}{2}
Los nu de vergelijking x=\frac{-11±5}{2} op als ± negatief is. Trek 5 af van -11.
x=-8
Deel -16 door 2.
x^{2}+11x+24=\left(x-\left(-3\right)\right)\left(x-\left(-8\right)\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door -3 en x_{2} door -8.
x^{2}+11x+24=\left(x+3\right)\left(x+8\right)
Vereenvoudig alle uitdrukkingen in de formule p-\left(-q\right) naar p+q.