Oplossen voor g (complex solution)
\left\{\begin{matrix}g=-\frac{2\left(tv_{0}-x_{0}\right)}{t^{2}}\text{, }&t\neq 0\\g\in \mathrm{C}\text{, }&x_{0}=0\text{ and }t=0\end{matrix}\right,
Oplossen voor g
\left\{\begin{matrix}g=-\frac{2\left(tv_{0}-x_{0}\right)}{t^{2}}\text{, }&t\neq 0\\g\in \mathrm{R}\text{, }&x_{0}=0\text{ and }t=0\end{matrix}\right,
Oplossen voor t (complex solution)
\left\{\begin{matrix}t=-\frac{\sqrt{2gx_{0}+v_{0}^{2}}+v_{0}}{g}\text{; }t=-\frac{-\sqrt{2gx_{0}+v_{0}^{2}}+v_{0}}{g}\text{, }&g\neq 0\\t=\frac{x_{0}}{v_{0}}\text{, }&g=0\text{ and }v_{0}\neq 0\\t\in \mathrm{C}\text{, }&g=0\text{ and }v_{0}=0\text{ and }x_{0}=0\end{matrix}\right,
Oplossen voor t
\left\{\begin{matrix}t=-\frac{\sqrt{2gx_{0}+v_{0}^{2}}+v_{0}}{g}\text{; }t=-\frac{-\sqrt{2gx_{0}+v_{0}^{2}}+v_{0}}{g}\text{, }&\left(g>0\text{ or }x_{0}\leq -\frac{v_{0}^{2}}{2g}\right)\text{ and }\left(x_{0}\leq \text{Indeterminate}\text{ or }g\neq 0\right)\text{ and }\left(g<0\text{ or }\left(g\neq 0\text{ and }x_{0}\geq -\frac{v_{0}^{2}}{2g}\right)\right)\\t=\frac{x_{0}}{v_{0}}\text{, }&g=0\text{ and }v_{0}\neq 0\\t\in \mathrm{R}\text{, }&g=0\text{ and }v_{0}=0\text{ and }x_{0}=0\end{matrix}\right,
Quiz
Linear Equation
5 opgaven vergelijkbaar met:
x _ { 0 } = v _ { 0 } t + \frac { 1 } { 2 } g t ^ { 2 }
Delen
Gekopieerd naar klembord
v_{0}t+\frac{1}{2}gt^{2}=x_{0}
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
\frac{1}{2}gt^{2}=x_{0}-v_{0}t
Trek aan beide kanten v_{0}t af.
\frac{t^{2}}{2}g=x_{0}-tv_{0}
De vergelijking heeft de standaardvorm.
\frac{2\times \frac{t^{2}}{2}g}{t^{2}}=\frac{2\left(x_{0}-tv_{0}\right)}{t^{2}}
Deel beide zijden van de vergelijking door \frac{1}{2}t^{2}.
g=\frac{2\left(x_{0}-tv_{0}\right)}{t^{2}}
Delen door \frac{1}{2}t^{2} maakt de vermenigvuldiging met \frac{1}{2}t^{2} ongedaan.
v_{0}t+\frac{1}{2}gt^{2}=x_{0}
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
\frac{1}{2}gt^{2}=x_{0}-v_{0}t
Trek aan beide kanten v_{0}t af.
\frac{t^{2}}{2}g=x_{0}-tv_{0}
De vergelijking heeft de standaardvorm.
\frac{2\times \frac{t^{2}}{2}g}{t^{2}}=\frac{2\left(x_{0}-tv_{0}\right)}{t^{2}}
Deel beide zijden van de vergelijking door \frac{1}{2}t^{2}.
g=\frac{2\left(x_{0}-tv_{0}\right)}{t^{2}}
Delen door \frac{1}{2}t^{2} maakt de vermenigvuldiging met \frac{1}{2}t^{2} ongedaan.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}