Overslaan en naar de inhoud gaan
Factoriseren
Tick mark Image
Evalueren
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

a+b=-6 ab=1\left(-55\right)=-55
Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als x^{2}+ax+bx-55. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
1,-55 5,-11
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b negatief is, heeft het negatieve getal een grotere absolute waarde dan de positieve. Alle paren met gehele getallen die een product -55 geven weergeven.
1-55=-54 5-11=-6
Bereken de som voor elk paar.
a=-11 b=5
De oplossing is het paar dat de som -6 geeft.
\left(x^{2}-11x\right)+\left(5x-55\right)
Herschrijf x^{2}-6x-55 als \left(x^{2}-11x\right)+\left(5x-55\right).
x\left(x-11\right)+5\left(x-11\right)
Beledigt x in de eerste en 5 in de tweede groep.
\left(x-11\right)\left(x+5\right)
Factoriseer de gemeenschappelijke term x-11 door gebruik te maken van distributieve eigenschap.
x^{2}-6x-55=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-55\right)}}{2}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-55\right)}}{2}
Bereken de wortel van -6.
x=\frac{-\left(-6\right)±\sqrt{36+220}}{2}
Vermenigvuldig -4 met -55.
x=\frac{-\left(-6\right)±\sqrt{256}}{2}
Tel 36 op bij 220.
x=\frac{-\left(-6\right)±16}{2}
Bereken de vierkantswortel van 256.
x=\frac{6±16}{2}
Het tegenovergestelde van -6 is 6.
x=\frac{22}{2}
Los nu de vergelijking x=\frac{6±16}{2} op als ± positief is. Tel 6 op bij 16.
x=11
Deel 22 door 2.
x=-\frac{10}{2}
Los nu de vergelijking x=\frac{6±16}{2} op als ± negatief is. Trek 16 af van 6.
x=-5
Deel -10 door 2.
x^{2}-6x-55=\left(x-11\right)\left(x-\left(-5\right)\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door 11 en x_{2} door -5.
x^{2}-6x-55=\left(x-11\right)\left(x+5\right)
Vereenvoudig alle uitdrukkingen in de formule p-\left(-q\right) naar p+q.